RSS-Feed abonnieren
DOI: 10.1160/TH05-02-0118
Anti-factor VIII antibodies
A 2005 updatePublikationsverlauf
Received28. Juni 2005
Accepted after revision22. Juli 2005
Publikationsdatum:
07. Dezember 2017 (online)
Summary
The development of anti-factorVIII (FVIII) antibodies is currently one of the most serious complications in the treatment of haemophilia A patients. Numerous studies in literature report on their epitope specificity, their mechanism of FVIII inactivation, and their relationship with FVIII genetic alterations. During the last two years, however, a particular effort has been made to better understand their generation, with particular emphasis on the interplay of T cells and B cells specific for FVIII and the generation of anti-FVIII antibodies. Moreover, novel strategies to improve the management or treatment of patients with anti- FVIII antibodies have been recently proposed: the use of less immunogenic engineered recombinant FVIII molecules, neutralization of inhibitors by blocking their deleterious activity either by low molecular weight peptide decoys or by anti-idiotypic antibodies, and attempts to suppress the T-cell response involved in the antibody formation. All of these represent promising therapeutic approaches. This review attempts to sum up current knowledge of the nature and properties of anti-FVIII antibodies, their mechanism of action, their neutralization by anti-idiotypic antibodies, and the role of T cells in FVIII inhibitor formation. In the final part, some of the new strategies susceptible to improve the management or the eradication of anti-FVIII antibodies are presented.
-
References
- 1 Ehrenforth S, Kreuz W, Scharrer I. et al. Incidence of development of factor VIII and factor IX inhibitors in haemophiliacs. Lancet 1992; 339: 594-8.
- 2 Kessler CM. Acquired factor VIII autoantibody inhibitors: current concepts and potential therapeutic strategies for the future. Haematologica 2000; 85: 57-61 discussion 61-53.
- 3 Gilles JG, Arnout J, Vermylen J. et al. Anti-factor VIII antibodies of hemophiliac patients are frequently directed towards nonfunctional determinants and do not exhibit isotypic restriction. Blood 1993; 82: 2452-61.
- 4 Algiman M, Dietrich G, Nydegger U E. et al. Natural antibodies to factor VIII (anti-hemophilic factor) in healthy individuals. Proc Natl Acad Sci U S A 1992; 89: 3795-9.
- 5 Fulcher CA, de Graaf Mahoney S, Zimmerman TS. FVIII inhibitor IgG subclass and FVIII polypeptide specificity determined by immunoblotting. Blood 1987; 69: 1475-80.
- 6 Shapiro SS. The immunologic character of acquired inhibitors of antihemophilic globulin (factor VIII) and the kinetics of their interaction with factor VIII. J Clin Invest 1967; 46: 147-56.
- 7 Jacquemin M, Benhida A, Peerlinck K. et al. A human antibody directed to the factor VIII C1 domain inhibits factor VIII cofactor activity and binding to von Willebrand factor. Blood 2000; 95: 156-63.
- 8 Jacquemin MG, Desqueper BG, Benhida A. et al. Mechanism and kinetics of factor VIII inactivation: study with an IgG4 monoclonal antibody derived from a hemophilia A patient with inhibitor. Blood 1998; 92: 496-506.
- 9 Hoyer LW, Gawryl MS, de la Fuente B. Immunochemical characterization of factor VIII inhibitors. Prog Clin Biol Res 1984; 150: 73-85.
- 10 Voorberg J, van den Brink EN. Phage display technology: a tool to explore the diversity of inhibitors to blood coagulation factor VIII. Semin Thromb Hemost 2000; 26: 143-50.
- 11 van den Brink EN, Bril WS, Turenhout E A. et al. Two classes of germline genes both derived from the V(H)1 family direct the formation of human antibodies that recognize distinct antigenic sites in the C2 domain of factor VIII. Blood 2002; 99: 2828-34.
- 12 van Den Brink EN, Turenhout EA, Davies J. et al. Human antibodies with specificity for the C2 domain of factor VIII are derived from VH1 germline genes. Blood 2000; 95: 558-63.
- 13 Rock EP, Sibbald PR, Davis M M. et al. CDR3 length in antigen-specific immune receptors. J Exp Med 1994; 179: 323-8.
- 14 Spiegel Jr. PC, Jacquemin M, Saint-Remy JM. et al. Structure of a factor VIII C2 domain-immunoglobulin G4kappa Fab complex: identification of an inhibitory antibody epitope on the surface of factor VIII. Blood 2001; 98: 13-9.
- 15 Schwaab R, Brackmann HH, Meyer C. et al. Haemophilia A: mutation type determines risk of inhibitor formation. Thromb Haemost 1995; 74: 1402-6.
- 16 Millar DS, Steinbrecher RA, Wieland K. et al. The molecular genetic analysis of haemophilia A; characterization of six partial deletions in the factor VIII gene. Hum Genet 1990; 86: 219-27.
- 17 Oldenburg J, Schroder J, Hermann Brackmann H. et al. Environmental and genetic factors influencing inhibitor development. Semin Hematol 2004; 41: 82-8.
- 18 Peerlinck K, Jacquemin MG, Arnout J. et al. Antifactor VIII antibody inhibiting allogeneic but not autologous factor VIII in patients with mild hemophilia A. Blood 1999; 93: 2267-73.
- 19 Hay CR, Ludlam CA, Colvin B T. et al. Factor VIII inhibitors in mild and moderate-severity haemophilia A. UK Haemophilia Centre Directors Organisation. Thromb Haemost 1998; 79: 762-6.
- 20 Kemball-Cook G, Tuddenham EGD, Wacey AI. The factor VIII structure and mutation resource site: HAMSTeRS version 4. Nucleic Acids Res 1998; 26: 216-9.
- 21 Peerlinck K, Arnout J, Gilles J G. et al. A higher than expected incidence of factor VIII inhibitors in multitransfused haemophilia A patients treated with an intermediate purity pasteurized factor VIII concentrate. Thromb Haemost 1993; 69: 115-8.
- 22 Rosendaal FR, Nieuwenhuis HK, van den Berg HM. et al. A sudden increase in factor VIII inhibitor development in multitransfused hemophilia A patients in The Netherlands. Dutch Hemophilia Study Group. Blood 1993; 81: 2180-6.
- 23 Barrow RT, Healey JF, Jacquemin M G. et al. Antigenicity of putative phospholipid membrane-binding residues in factor VIII. Blood 2001; 97: 169-74.
- 24 Sawamoto Y, Prescott R, Zhong D. et al. Dominant C2 domain epitope specificity of inhibitor antibodies elicited by a heat pasteurized product, factor VIII CPS-P, in previously treated hemophilia A patients without inhibitors. Thromb Haemost 1998; 79: 62-8.
- 25 Peerlinck K, Arnout J, Di Giambattista M. et al. Factor VIII inhibitors in previously treated haemophilia A patients with a double virus-inactivated plasma derived factor VIII concentrate. Thromb Haemost 1997; 77: 80-6.
- 26 Behrmann M, Pasi J, Saint-Remy JM. et al. Von Willebrand factor modulates factor VIII immunogenicity: comparative study of different factor VIII concentrates in a haemophilia A mouse model. Thromb Haemost 2002; 88: 221-9.
- 27 Lusher JM. Hemophilia treatment. Factor VIII inhibitors with recombinant products: prospective clinical trials. Haematologica 2000; 85: 2-5 discussion 5-6.
- 28 Hoyer LW. Why do so many haemophilia A patients develop an inhibitor?. Br J Haematol 1995; 90: 498-501.
- 29 Saint-Remy JM. Hemophilia factor VIII therapy. Band T-cell tolerance: from basic concepts to clinical practice. Haematologica 2000; 85: 93-6.
- 30 Punnonen J, Aversa G, Cocks B G. et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci U S A 1993; 90: 3730-4.
- 31 Rajewsky K. Clonal selection and learning in the antibody system. Nature 1996; 381: 751-8.
- 32 Bray GL, Kroner BL, Arkin S. et al. Loss of highresponder inhibitors in patients with severe hemophilia A and human immunodeficiency virus type 1 infection: a report from the Multi-Center Hemophilia Cohort Study. Am J Hematol 1993; 42: 375-9.
- 33 Bi L, Lawler AM, Antonarakis S E. et al. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet 1995; 10: 119-21.
- 34 Bi L, Sarkar R, Naas T. et al. Further characterization of factor VIII-deficient mice created by gene targeting: RNA and protein studies. Blood 1996; 88: 3446-50.
- 35 Qian J, Borovok M, Bi L. et al. Inhibitor antibody development and T cell response to human factor VIII in murine hemophilia A. Thromb Haemost 1999; 81: 240-4.
- 36 Hu GL, Okita DK, Conti-Fine BM. T cell recognition of the A2 domain of coagulation factor VIII in hemophilia patients and healthy subjects. J Thromb Haemost 2004; 2: 1908-17.
- 37 Jacquemin M, Vantomme V, Buhot C. et al. CD4+ T-cell clones specific for wild-type factor VIII: a molecular mechanism responsible for a higher incidence of inhibitor formation in mild/moderate hemophilia A. Blood 2003; 101: 1351-8.
- 38 Jones TD, Phillips WJ, Smith B J. et al. Identification and removal of a promiscuous CD4+ T cell epitope from the C1 domain of factor VIII. J Thromb Haemost 2005; 3: 991-1000.
- 39 Matsutani T, Sakurai Y, Yoshioka T. et al. Replacement therapy with plasma-derived factor VIII concentrates induces skew in T-cell receptor usage and clonal expansion of CD8+ T-cell in HIV-seronegative hemophilia patients. Thromb Haemost 2003; 90: 279-92.
- 40 Misra N, Bayry J, Pashov A. et al. Restricted BV gene usage by factor VIII-reactive CD4+ T cells in inhibitor-positive patients with severe hemophilia A. Thromb Haemost 2003; 90: 813-22.
- 41 Reding MT, Okita DK, Diethelm-Okita BM. et al. Epitope repertoire of human CD4(+) T cells on the A3 domain of coagulation factor VIII. J Thromb Haemost 2004; 2: 1385-94.
- 42 Reding MT, Okita DK, Diethelm-Okita BM. et al. Human CD4+ T-cell epitope repertoire on the C2 domain of coagulation factor VIII. J Thromb Haemost 2003; 1: 1777-84.
- 43 Singer ST, Addiego Jr. JE, Reason DC. et al. T lymphocyte proliferative responses induced by recombinant factor VIII in hemophilia A patients with inhibitors. Thromb Haemost 1996; 76: 17-22.
- 44 Lippert LE, Fisher LM, Schook LB. Relationship of major histocompatibility complex class II genes to inhibitor antibody formation in hemophilia A. Thromb Haemost 1990; 64: 564-8.
- 45 Oldenburg J, Brackmann HH, Schwaab R. Risk factors for inhibitor development in hemophilia A. Haematologica 2000; 85: 7-13 discussion 13–14.
- 46 Hay CR, Ollier W, Pepper L. et al. HLA class II profile: a weak determinant of factor VIII inhibitor development in severe haemophilia A. UKHCDO Inhibitor Working Party. Thromb Haemost 1997; 77: 234-7.
- 47 Sultan Y, Kazatchkine MD, Maisonneuve P. et al. Anti-idiotypic suppression of autoantibodies to factor VIII (antihaemophilic factor) by high-dose intravenous gammaglobulin. Lancet 1984; 2: 765-8.
- 48 Gilles JG, Desqueper B, Lenk H. et al. Neutralizing antiidiotypic antibodies to factor VIII inhibitors after desensitization in patients with hemophilia A. J Clin Invest 1996; 97: 1382-8.
- 49 Sakurai Y, Shima M, Tanaka I. et al. Association of anti-idiotypic antibodies with immune tolerance induction for the treatment of hemophilia A with inhibitors. Haematologica 2004; 89: 696-703.
- 50 Dietrich G, Pereira P, Algiman M. et al. A monoclonal anti-idiotypic antibody against the antigen-combining site of anti-factor VIII autoantibodies defines and idiotope that is recognized by normal human polyspecific immunoglobulins for therapeutic use (IVIg). J Autoimmun 1990; 3: 547-57.
- 51 Gilles JG, Grailly SC, De Maeyer M. et al. In vivo neutralization of a C2 domain-specific human anti- Factor VIII inhibitor by an anti-idiotypic antibody. Blood 2004; 103: 2617-23.
- 52 Gilles JG, Saint-Remy JM. Healthy subjects produce both anti-factor VIII and specific anti-idiotypic antibodies. J Clin Invest 1994; 94: 1496-505.
- 53 Rossi F, Sultan Y, Kazatchkine MD. Anti-idiotypes against autoantibodies and alloantibodies to VIII:C (anti-haemophilic factor) are present in therapeutic polyspecific normal immunoglobulins. Clin Exp Immunol 1988; 74: 311-6.
- 54 Fulcher CA, de Graaf Mahoney S, Roberts J R. et al. Localization of human factor FVIII inhibitor epitopes to two polypeptide fragments. Proc Natl Acad Sci U S A 1985; 82: 7728-32.
- 55 Furie B, Furie BC. The molecular basis of blood coagulation. Cell 1988; 53: 505-18.
- 56 Scandella D, DeGraaf Mahoney S, Mattingly M. et al. Epitope mapping of human factor VIII inhibitor antibodies by deletion analysis of factor VIII fragments expressed inEscherichia coli . Proc Natl Acad Sci U S A 1988; 85: 6152-6.
- 57 Lollar P, Parker ET, Fay PJ. Coagulant properties of hybrid human/porcine factor VIII molecules. J Biol Chem 1992; 267: 23652-7.
- 58 Healey JF, Lubin IM, Nakai H. et al. Residues 484–508 contain a major determinant of the inhibitory epitope in the A2 domain of human factor VIII. J Biol Chem 1995; 270: 14505-9.
- 59 Lubin IM, Healey JF, Barrow R T. et al. Analysis of the human factor VIII A2 inhibitor epitope by alanine scanning mutagenesis. J Biol Chem 1997; 272: 30191-5.
- 60 Healey JF, Barrow RT, Tamim H M. et al. Residues Glu2181-Val2243 contain a major determinant of the inhibitory epitope in the C2 domain of human factor VIII. Blood 1998; 92: 3701-9.
- 61 Nogami K, Shima M, Nakai H. et al. Identification of a factor VIII peptide, residues 2315–2330, which neutralizes human factor VIII C2 inhibitor alloantibodies: requirement of Cys2326 and Glu2327 for maximum effect. Br J Haematol 1999; 107: 196-203.
- 62 Scandella D, Gilbert GE, Shima M. et al. Some factor VIII inhibitor antibodies recognize a common epitope corresponding to C2 domain amino acids 2248 through 2312, which overlap a phospholipid-binding site. Blood 1995; 86: 1811-9.
- 63 Pratt KP, Shen BW, Takeshima K. et al. Structure of the C2 domain of human factor VIII at 1.5 A resolution. Nature 1999; 402: 439-42.
- 64 Fijnvandraat K, Celie PH, Turenhout E A. et al. A human alloantibody interferes with binding of factor IXa to the factor VIII light chain. Blood 1998; 91: 2347-52.
- 65 Zhong D, Saenko EL, Shima M. et al. Some human inhibitor antibodies interfere with factor VIII binding to factor IX. Blood 1998; 92: 136-42.
- 66 Barrow RT, Healey JF, Gailani D. et al. Reduction of the antigenicity of factor VIII toward complex inhibitory antibody plasmas using multiply-substituted hybrid human/porcine factor VIII molecules. Blood 2000; 95: 564-8.
- 67 Foster PA, Fulcher CA, Houghten R A. et al. Localization of the binding regions of a murine monoclonal anti-factor VIII antibody and a human anti-factor VIII alloantibody, both of which inhibit factor VIII procoagulant activity, to amino acid residues threonine351- serine365 of the factor VIII heavy chain. J Clin Invest 1988; 82: 123-8.
- 68 Lubahn BC, Ware J, Stafford D W. et al. Identification of a F.VIII epitope recognized by a human hemophilic inhibitor. Blood 1989; 73: 497-9.
- 69 Ware J, Toomey JR, Stafford DW. Localization of a factor VIII-inhibiting antibody epitope to a region between residues 338 and 362 of factor VIII heavy chain. Proc Natl Acad Sci U S A 1988; 85: 3165-9.
- 70 Raut S, Villard S, Grailly S. et al. Anti-heavy-chain monoclonal antibodies directed to the acidic regions of the factor VIII molecule inhibit the binding of factor VIII to phospholipids and von Willebrand factor. Thromb Haemost 2003; 90: 385-97.
- 71 Tiarks C, Pechet L, Anderson J. et al. Characterization of a factor VIII immunogenic site using factor VIII synthetic peptide 1687–1695 and rabbit anti-peptide antibodies. Thromb Res 1992; 65: 301-10.
- 72 Foster PA, Fulcher CA, Houghten R A. et al. An immunogenic region within residues Val1670-Glu1684 of the factor VIII light chain induces antibodies which inhibit binding of factor VIII to von Willebrand factor. J Biol Chem 1988; 263: 5230-4.
- 73 Precup JW, Kline BC, Fass DN. A monoclonal antibody to factor VIII inhibits von Willebrand factor binding and thrombin cleavage. Blood 1991; 77: 1929-36.
- 74 Fulcher CA, Lechner K, de Graaf Mahoney S. Immunoblot analysis shows changes in factor VIII inhibitor chain specificity in factor VIII inhibitor patients over time. Blood 1988; 72: 1348-56.
- 75 Scandella D. Human anti-factor VIII antibodies: epitope localization and inhibitory function. Vox Sang 1996; 70: 9-14.
- 76 Gilbert GE, Kaufman RJ, Arena A A. et al. Four hydrophobic amino acids of the factor VIII C2 domain are constituents of both the membrane-binding and von Willebrand factor-binding motifs. J Biol Chem 2002; 277: 6374-81.
- 77 Saenko EL, Scandella D. The acidic region of the factor VIII light chain and the C2 domain together form the high affinity binding site for von willebrand factor. J Biol Chem 1997; 272: 18007-14.
- 78 Fay PJ, Koshibu K. The A2 subunit of factor VIIIa modulates the active site of factor IXa. J Biol Chem 1998; 273: 19049-54.
- 79 Lenting PJ, van de Loo JW, Donath M J. et al. The sequence Glu1811-Lys1818 of human blood coagulation factor VIII comprises a binding site for activated factor IX. J Biol Chem 1996; 271: 1935-40.
- 80 Lollar P, Parker ET, Curtis J E. et al. Inhibition of human factor VIIIa by anti-A2 subunit antibodies. J Clin Invest 1994; 93: 2497-504.
- 81 Nogami K, Shima M, Nishiya K. et al. Anticoagulant effects of a synthetic peptide containing residues Thr-2253-Gln-2270 within factor VIII C2 domain that selectively inhibits factor Xa-catalysed factor VIII activation. Br J Haematol 2002; 116: 868-74.
- 82 Lapan KA, Fay PJ. Localization of a factor X interactive site in the A1 subunit of factor VIIIa. J Biol Chem 1997; 272: 2082-8.
- 83 Saenko EL, Scandella D, Yakhyaev A V. et al. Activation of Factor VIII by thrombin increases its affinity for binding to synthetic phospholipid membranes and activated platelets. J Biol Chem 1998; 273: 27918-26.
- 84 Saenko EL, Shima M, Gilbert G E. et al. Slowed release of thrombin-cleaved factor VIII from von Willebrand factor by a monoclonal and a human antibody is a novel mechanism for factor VIII inhibition. J Biol Chem 1996; 271: 27424-31.
- 85 Lacroix-Desmazes S, Moreau A. Sooryanarayana et al. Catalytic activity of antibodies against factor VIII in patients with hemophilia A. Nat Med 1999; 5: 1044-7.
- 86 Lacroix-Desmazes S, Bayry J, Misra N. et al. The prevalence of proteolytic antibodies against factor VIII in hemophilia A. N Engl J Med 2002; 346: 662-7.
- 87 Kazatchkine MD, Sultan Y, Burton-Kee EJ. et al. Circulating immune complexes containing anti-VIII antibodies in multi-transfused patients with haemophilia A. Clin Exp Immunol 1980; 39: 315-20.
- 88 Ananyeva N, Tjurmin A, Saenko E. et al. Low density lipoproteins interact with acidic fibroblast growth factor and modify its function. Arterioscler Thromb Vasc Biol 2003; 23: 601-7.
- 89 Bovenschen N, Boertjes RC, van Stempvoort G. et al. Low density lipoprotein receptor-related protein and factor IXa share structural requirements for binding to the A3 domain of coagulation factor VIII. J Biol Chem 2003; 278: 9370-7.
- 90 Lenting PJ, Neels JG, van den Berg BM. et al. The light chain of factor VIII comprises a binding site for low density lipoprotein receptor-related protein. J Biol Chem 1999; 274: 23734-9.
- 91 Saenko EL, Yakhyaev AV, Mikhailenko I. et al. Role of the low density lipoprotein related protein receptor in mediation of factor VIII catabolism. J Biol Chem 1999; 274: 37685-92.
- 92 Morrison AE, Ludlam CA, Kessler C. Use of porcine factor VIII in the treatment of patients with acquired hemophilia. Blood 1993; 81: 1513-20.
- 93 Koshihara K, Qian J, Lollar P. et al. Immunoblot cross-reactivity of factor VIII inhibitors with porcine factor VIII. Blood 1995; 86: 2183-90.
- 94 Garvey MB. Porcine factor VIII in the treatment of high-titre inhibitor patients. Haemophilia 2002; 8 (Suppl. 01) 5-8.
- 95 Lee CA. The evidence behind inhibitor treatment with porcine factor VIII. Pathophysiol Haemost Thromb 2002; 32 (Suppl. 01) 5-8.
- 96 Lollar P. Analysis of factor VIII inhibitors using hybrid human/porcine factor VIII. Thromb Haemost 1997; 78: 647-51.
- 97 Villard S, Lacroix-Desmazes S, Kieber-Emmons T. et al. Peptide decoys selected by phage display block in vitro andin vivo activity of a human anti-FVIII inhibitor. Blood 2003; 102: 949-52.
- 98 Villard S, Piquer D, Raut S. et al. Low molecular weight peptides restore the procoagulant activity of factor VIII in the presence of the potent inhibitor antibody ESH8. J Biol Chem 2002; 277: 27232-9.
- 99 Benhamou LE, Cazenave PA, Sarthou P. Anti-immunoglobulins induce death by apoptosis in WEHI-231 B lymphoma cells. Eur J Immunol 1990; 20: 1405-7.
- 100 Tobinai K, Kobayashi Y, Narabayashi M. et al. Feasibility and pharmacokinetic study of a chimeric anti-CD20 monoclonal antibody (IDEC-C2B8, rituximab) in relapsed B-cell lymphoma. The IDEC-C2B8 Study Group. Ann Oncol 1998; 9: 527-34.
- 101 Stasi R, Brunetti M, Stipa E. et al. Selective B-cell depletion with rituximab for the treatment of patients with acquired hemophilia. Blood 2004; 103: 4424-28.
- 102 Qian J, Collins M, Sharpe A H. et al. Prevention and treatment of factor VIII inhibitors in murine hemophilia A. Blood 2000; 95: 1324-9.
- 103 Scandella DH, Nakai H, Felch M. et al. In hemophilia a and autoantibody inhibitor patients: the factor VIII a2 domain and light chain are most immunogenic. Thromb Res 2001; 101: 377-85.
- 104 Qian J, Burkly LC, Smith E P. et al. Role of CD154 in the secondary immune response: the reduction of pre-existing splenic germinal centers and anti-factor VIII inhibitor titer. Eur J Immunol 2000; 30: 2548-54.
- 105 Reipert BM, Sasgary M, Ahmad R U. et al. Blockade of CD40/CD40 ligand interactions prevents induction of factor VIII inhibitors in hemophilic mice but does not induce lasting immune tolerance. Thromb Haemost 2001; 86: 1345-52.
- 106 Rossi G, Sarkar J, Scandella D. Long-term induction of immune tolerance after blockade of CD40-CD40L interaction in a mouse model of hemophilia A. Blood 2001; 97: 2750-7.
- 107 Ewenstein BM, Hoots WK, Lusher J M. et al. Inhibition of CD40 ligand (CD154) in the treatment of factor VIII inhibitors. Haematologica 2000; 85: 35-9.
- 108 Appel H, Seth NP, Gauthier L. et al. Anergy induction by dimeric TCR ligands. J Immunol 2001; 166: 5279-85.
- 109 Stoilova-McPhie S, Villoutreix BO, Mertens K. et al. 3-Dimensional structure of membrane-bound coagulation factor VIII: modeling of the factor VIII heterodimer within a 3-dimensional density map derived by electron crystallography. Blood 2002; 99: 1215-23.