Thromb Haemost 2006; 95(05): 857-864
DOI: 10.1160/TH05-08-0569
Endothelium and Vascular Development
Schattauer GmbH

Successful silencing of plasminogen activator inhibitor-1 in human vascular endothelial cells using small interfering RNA

Anneke Hecke
1   Laboratoire des Défenses Antivirales et Antitumorales, UMR 5124 CNRS, Université Montpellier 2, Montpellier, France
2   Department of Cardiology and Pulmonary Medicine, Georg August University of Göttingen, Göttingen, Germany
,
Hilary Brooks
1   Laboratoire des Défenses Antivirales et Antitumorales, UMR 5124 CNRS, Université Montpellier 2, Montpellier, France
,
Matthieu Meryet-Figuière
2   Department of Cardiology and Pulmonary Medicine, Georg August University of Göttingen, Göttingen, Germany
,
Stephanie Minne
2   Department of Cardiology and Pulmonary Medicine, Georg August University of Göttingen, Göttingen, Germany
,
Stavros Konstantinides
2   Department of Cardiology and Pulmonary Medicine, Georg August University of Göttingen, Göttingen, Germany
,
Gerd Hasenfuss
2   Department of Cardiology and Pulmonary Medicine, Georg August University of Göttingen, Göttingen, Germany
,
Bernard Lebleu*
1   Laboratoire des Défenses Antivirales et Antitumorales, UMR 5124 CNRS, Université Montpellier 2, Montpellier, France
,
Katrin Schäfer*
2   Department of Cardiology and Pulmonary Medicine, Georg August University of Göttingen, Göttingen, Germany
› Author Affiliations
Financial support: This work was supported by a Eurogendis Marie Curie fellowship and a research grant from the University of Goettingen to A.H., and by a grant from the Association pour la Recherche sur le Cancer to B.L.
Further Information

Publication History

Received 21 August 2005

Accepted after resubmission 22 March 2006

Publication Date:
01 December 2017 (online)

Summary

Clinical as well as experimental evidence suggests that vascular overexpression of plasminogen activator inhibitor (PAI)-1, the primary physiological inhibitor of both urokinase and tissuetype plasminogen activator, may be involved in the pathophysiology of atherosclerosis and cardiovascular disease. We investigated the feasibility, efficacy and functional effects of PAI-1 gene silencing in human vascular endothelial cells using small interfering RNA. Double-stranded 21 bp-RNA molecules targeted at sequences within the human PAI-1 gene were constructed. Successful siRNA transfection of HUVEC was confirmed using fluorescence microscopy and flow cytometry. One of five candidate siRNA sequences reduced PAI-1 mRNA and protein in a concentrationand time-dependent manner. Suppression of PAI-1 mRNA was detected up to 72 hours after transfection. Moreover, siRNA treatment reduced the activity of PAI-1 released from HUVEC, and prevented the oxLDL- or LPS-induced upregulation of PAI-1 secretion. Importantly, siRNA treatment did not affect the expression of other endothelial-cell markers. Moreover, downregulation of PAI-1 significantly enhanced the ability of endothelial cells to adhere to vitronectin, and this effect could be reversed upon addition of recombinant PAI-1. SiRNAmediated reduction of PAI-1 expression may be a promising strategy for dissecting the effects of PAI-1 on vascular homeostasis.

* B.L. and K.S. share the senior authorship.


 
  • References

  • 1 Schneiderman J, Sawdey MS, Keeton MR. et al. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Natl Acad Sci USA 1992; 89: 6998-7002.
  • 2 Anand SS, Yi Q, Gerstein H. et al. Relationship of metabolic syndrome and fibrinolytic dysfunction to cardiovascular disease. Circulation 2003; 108: 420-5.
  • 3 Collet JP, Montalescot G, Vicaut E. et al. Acute release of plasminogen activator inhibitor-1 in ST-segment elevation myocardial infarction predicts mortality. Circulation 2003; 108: 391-4.
  • 4 Schäfer K, Müller K, Hecke A. et al. Enhanced thrombosis in atherosclerosis-prone mice is associated with increased arterial expression of plasminogen activator inhibitor-1. Arterioscler Thromb Vasc Biol 2003; 23: 2097-103.
  • 5 Konstantinides S, Schäfer K, Thinnes T. et al. Plasminogen activator inhibitor-1 and its cofactor vitronectin stabilize arterial thrombi after vascular injury in mice. Circulation 2001; 103: 576-83.
  • 6 Allison BA, Nilsson L, Karpe F. et al. Effects of native, triglyceride-enriched, and oxidatively modified LDL on plasminogen activator inhibitor-1 expression in human endothelial cells. Arterioscler Thromb Vasc Biol 1999; 19: 1354-60.
  • 7 Dichtl W, Stiko A, Eriksson P. et al. Oxidized LDL and lysophosphatidylcholine stimulate plasminogen activator inhibitor-1 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999; 19: 3025-32.
  • 8 Schäfer K, Fujisawa K, Konstantinides S. et al. Disruption of the plasminogen activator inhibitor 1 gene reduces the adiposity and improves the metabolic profile of genetically obese and diabetic ob/ob mice. FASEB J 2001; 15: 1840-2.
  • 9 Schäfer K, Konstantinides S. PAI-1 and vasculopathy: the debate continues. J Thromb Haemost 2004; 02: 13-5.
  • 10 Luttun A, Lupu F, Storkebaum E. et al. Lack of plasminogen activator inhibitor-1 promotes growth and abnormal matrix remodeling of advanced atherosclerotic plaques in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2002; 22: 499-505.
  • 11 Eitzman DT, Westrick RJ, Xu Z. et al. Plasminogen activator inhibitor-1 deficiency protects against atherosclerosis progression in the mouse carotid artery. Blood 2000; 96: 4212-5.
  • 12 Sjoland H, Eitzman DT, Gordon D. et al. Atherosclerosis progression in LDL receptor-deficient and apolipoprotein E-deficient mice is independent of genetic alterations in plasminogen activator inhibitor-1. Arterioscler Thromb Vasc Biol 2000; 20: 846-52.
  • 13 Fire A, Xu S, Montgomery MK. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans . Nature 1998; 391: 806-11.
  • 14 Elbashir SM, Harborth J, Lendeckel W. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494-8.
  • 15 Tuschl T, Borkhardt A. Small interfering RNAs: a revolutionary tool for the analysis of gene function and gene therapy. Mol Interv 2002; 02: 158-67.
  • 16 Ginsburg D, Zeheb R, Yang AY. et al. cDNA cloning of human plasminogen activator-inhibitor from endothelial cells. J Clin Invest 1986; 78: 1673-80.
  • 17 Tabengwa EM, Benza RL, Grenett HE. et al. Hypertriglyceridemic VLDL downregulates tissue plasminogen activator gene transcription through cis-repressive region(s) in the tissue plasminogen activator promoter in cultured human endothelial cells. Arterioscler Thromb Vasc Biol 2000; 20: 1675-81.
  • 18 Asahara T, Murohara T, Sullivan A. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-7.
  • 19 Thierry AR, Vives E, Richard JP. et al. Cellular uptake and intracellular fate of antisense oligonucleotides. Curr Opin Mol Ther 2003; 05: 133-8.
  • 20 Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell 2001; 104: 503-16.
  • 21 Libby P, Simon DI. Inflammation and thrombosis: the clot thickens. Circulation 2001; 103: 1718-20.
  • 22 Seiffert D, Ciambrone G, Wagner NV. et al. The somatomedin B domain of vitronectin. Structural requirements for the binding and stabilization of active type 1 plasminogen activator inhibitor. J Biol Chem 1994; 269: 2659-66.
  • 23 Waltz DA, Natkin LR, Fujita RM. et al. Plasmin and plasminogen activator inhibitor type 1 promote cellular motility by regulating the interaction between the urokinase receptor and vitronectin. J Clin Invest 1997; 100: 58-67.
  • 24 Deng G, Curriden SA, Hu G. et al. Plasminogen activator inhibitor-1 regulates cell adhesion by binding to the somatomedinB domain of vitronectin. J Cell Physiol 2001; 189: 23-33.
  • 25 Stefansson S, Lawrence DA. The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta3 binding to vitronectin [see comments]. Nature 1996; 383: 441-3.
  • 26 Carmeliet P, Moons L, Lijnen R. et al. Inhibitory role of plasminogen activator inhibitor-1 in arterial wound healing and neointima formation: a gene targeting and gene transfer study in mice [see comments]. Circulation 1997; 96: 3180-91.
  • 27 Czekay RP, Aertgeerts K, Curriden SA. et al. Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J Cell Biol 2003; 160: 781-91.
  • 28 Kanse SM, Kost C, Wilhelm OG. et al. The urokinase receptor is a major vitronectin-binding protein on endothelial cells. Exp Cell Res 1996; 224: 344-53.
  • 29 Bajou K, Noel A, Gerard RD. et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med 1998; 04: 923-8.
  • 30 Sawdey M, Podor TJ, Loskutoff DJ. Regulation of type 1 plasminogen activator inhibitor gene expression in cultured bovine aortic endothelial cells. Induction by transforming growth factor-beta, lipopolysaccharide, and tumor necrosis factor-alpha. J Biol Chem 1989; 264: 10396-401.
  • 31 Singer O, Yanai A, Verma IM. Silence of the genes. Proc Natl Acad Sci USA 2004; 101: 5313-4.
  • 32 Sledz CA, Holko M, de Veer MJ. et al. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003; 05: 834-9.
  • 33 Luo KQ, Chang DC. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem Biophys Res Commun 2004; 318: 303-10.
  • 34 Harborth J, Elbashir SM, Vandenburgh K. et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 2003; 13: 83-105.
  • 35 Reynolds A, Leake D, Boese Q. et al. Rational siRNA design for RNA interference. Nat Biotechnol 2004; 22: 326-30.
  • 36 Sawa H, Sobel BE, Fujii S. Inhibition of type-1 plasminogen activator inhibitor production by antisense oligonucleotides in human vascular endothelial and smooth muscle cells. J Biol Chem 1994; 269: 14149-52.
  • 37 Cierniewski CS, Babinska A, Swiatkowska M. et al. Inhibition by modified oligodeoxynucleotides of the expression of type-1 plasminogen activator inhibitor in human endothelial cells. Eur J Biochem 1995; 227: 494-9.
  • 38 Pawlowska Z, Pluskota E, Chabielska E. et al. Phosphorothioate oligodeoxyribonucleotides antisense to PAI-1 mRNA increase fibrinolysis and modify experimental thrombosis in rats. Thromb Haemost 1998; 79: 348-53.
  • 39 Vickers TA, Koo S, Bennett CF. et al. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem 2003; 278: 7108-18.
  • 40 Bertrand JR, Pottier M, Vekris A. et al. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo . Biochem Biophys Res Commun 2002; 296: 1000-4.
  • 41 Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 2004; 03: 318-29.