Thromb Haemost 2006; 96(03): 378-380
DOI: 10.1160/TH06-06-0333
Case Report
Schattauer GmbH

Fibrinogen Nottingham II: A novel Bβ Arg264gly substitution causing hypofibrinogenaemia

Marian B. Hill
1   Department of Clinical Chemistry, Nottingham University Hospitals, Nottingham, UK
,
Stephen O. Brennan
2   Canterbury Health Laboratories, Christchurch Hospital, Christchurch, New Zealand
,
Amy Dear
3   Molecular Pathology Laboratory, Christchurch School of Medicine and Health Sciences, Christchurch, New Zealand
,
Jane Strong
4   Department of Haematology, Nottingham University Hospitals, Nottingham, UK
,
Tara Nejim
1   Department of Clinical Chemistry, Nottingham University Hospitals, Nottingham, UK
,
Gerrard Dolan
4   Department of Haematology, Nottingham University Hospitals, Nottingham, UK
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 15. Juni 2006

Accepted after revision 04. August 2006

Publikationsdatum:
30. November 2017 (online)

 

 
  • References

  • 1 Weisel JW. Fibrinogen and fibrin. Adv Protein Chem 2005; 70: 247-99.
  • 2 Standeven KF, Ariens RA, Grant PJ. The molecular physiology and pathology of fibrin structure/function. Blood Rev 2005; 19: 275-88.
  • 3 Maghzal GJ, Brennan SO, Homer VM. et al. The molecular mechanisms of congenital hypofibrinogenaemia. Cell Mol Life Sci 2004; 61: 1427-38.
  • 4 Hill M, Deam S, Gordon B. et al. Mutation analysis in 51 patients with haemophilia A: report of 10 novel mutations and correlations between genotype and clinical phenotype. Haemophilia 2005; 11: 133-41.
  • 5 Brennan SO. Electrospray ionisation analysis of human fibrinogen. Thromb Haemost 1997; 78: 1055-8.
  • 6 Brennan SO, Fellowes AP, Faed JM. et al. Hypofibrinogenemia in an individual with2 coding (β82A>G and Bβ235 P.L) and 2 non-coding mutations. Blood 2000; 95: 1709-13.
  • 7 Maghzal GJ, Brennan SO, Fellowes AP. et al. Familial hypofibrinogenaemia associated with heterozygous substitution of a conserved arginine residue; Bß255 Arg>His (Fibrinogen Merivale). Biochim Biophys Acta 2003; 1645: 146-51.
  • 8 Brennan SO, Wyatt JM, May S. et al. Hypofibrinogenemia due to novel 316 Asp>Tyr substitution in the fibrinogen Bβ chain. Thromb Haemost 2001; 85: 450-3.
  • 9 Duga S, Asselta R, Santagostino E. et al. Missense mutations in the human β fibrinogen gene cause congenital afibrinogenemia by impairing fibrinogen secretion. Blood 2000; 95: 1336-41.
  • 10 Vu D, Bolton-Maggs PH, Parr JR. et al. Congenital afibrinogenemia: identification and expression of a missense mutation in FGB impairing fibrinogen secretion. Blood 2003; 102: 4413-5.
  • 11 Spena S, Asselta R, Duga S. et al. Congenital afibrinogenemia: intracellular retention of fibrinogen due to a novel W437G mutation in the fibrinogen Bβ-chain gene. Biochim Biophys Acta 2003; 1639: 87-94.
  • 12 Kostelansky MS, Betts L, Gorkun OV. et al. 2.8 A crystal structure of recombinant fibrinogen fragment D with and without two peptide ligands: GHRP binding to the ‘b’ site disrupts its nearby calcium-binding site. Biochemistry 2002; 41: 12124-32.
  • 13 Kostelansky MS, Lounes KC, Ping LF. et al. Calcium-binding site β2, adjacent to the ‘b’ polymerization site, modulates lateral aggregation of protofibrils during fibrinogen polymerization. Biochemistry 2004; 43: 2475-83.