Thromb Haemost 2007; 98(01): 138-147
DOI: 10.1160/TH06-09-0510
Blood Coagulation, Fibrinolysis and Cellular Haemostasis
Schattauer GmbH

Molecular characterization of human B domain-specific anti-factor VIII monoclonal antibodies generated in transgenic mice

Géraldine Lavigne-Lissalde*
1   1CNRS UMR 5160, Centre de Pharmacologie et Biotechnologie pour la Santé, Faculté de Pharmacie, Montpellier, France
2   Groupe Hospitalo-Universitaire CHU Carémeau, Nîmes, France
,
Sébastien Lacroix-Desmazes*
3   Institut National de la Santé et de la Recherche Médicale (INSERM), Unité (U) 681, Paris, France
4   Université Pierre et Marie Curie (UPMC – Paris 6), Centre de recherche des Cordeliers, Institut Fédératif de Recherche (IFR) 58, Paris, France
,
Bharath Wootla
3   Institut National de la Santé et de la Recherche Médicale (INSERM), Unité (U) 681, Paris, France
4   Université Pierre et Marie Curie (UPMC – Paris 6), Centre de recherche des Cordeliers, Institut Fédératif de Recherche (IFR) 58, Paris, France
,
Catherine Tarrade
1   1CNRS UMR 5160, Centre de Pharmacologie et Biotechnologie pour la Santé, Faculté de Pharmacie, Montpellier, France
,
Jean-François Schved
5   Hôpital Universitaire Saint-Eloi, Montpellier, France
,
Srini V. Kaveri
3   Institut National de la Santé et de la Recherche Médicale (INSERM), Unité (U) 681, Paris, France
4   Université Pierre et Marie Curie (UPMC – Paris 6), Centre de recherche des Cordeliers, Institut Fédératif de Recherche (IFR) 58, Paris, France
,
Claude Granier
1   1CNRS UMR 5160, Centre de Pharmacologie et Biotechnologie pour la Santé, Faculté de Pharmacie, Montpellier, France
,
Sylvie Villard-Saussine
1   1CNRS UMR 5160, Centre de Pharmacologie et Biotechnologie pour la Santé, Faculté de Pharmacie, Montpellier, France
› Institutsangaben
Financial support: This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), by the Centre National de la Recherche Scientifique (CNRS), by the Université Pierre et Marie Curie-Paris 6, and by grants from Bayer Healthcare (Puteaux, France), Wyeth (Paris la Défense, France), Baxter (Maurepas, France) and LFB (Les Ulis, France). BW is the recipient of a fellowship from LFB.
Weitere Informationen

Publikationsverlauf

Received 11. September 2006

Accepted after resubmission 03. April 2007

Publikationsdatum:
29. November 2017 (online)

Summary

The development of antibodies directed against factorVIII (FVIII) represents a major hurdle in the treatment of hemophilia A. Most anti-FVIII antibodies are identified through their ability to inhibit the FVIII procoagulant activity. Many of them, however, do not interfere with the functional properties of FVIII. Antibodies directed against the B domain belong to this latter category. Here, we characterized B domain-specific human monoclonal Abs (mAbs) at the molecular level. A series of human mAbs directed against FVIII was produced upon immunization of transgenic XenoMouse mice with human recombinant FVIII (rFVIII). Selection of the hybridoma with epitope specificity for the B domain was performed by differential recognition of full-length and B domain-deleted rFVIII. None of the anti-B domain mAbs demonstrated inhibitory activity against FVIII. Three of the mAbs recognized linear epitopes: mAb 25H3 bound to the 1014HIDGPSLLIEN1024 sequence; mAbs 8E3 and 22B6 shared the same epitope, composed of residues 1534KWNEANR1540. The corresponding soluble peptides inhibited the binding of their respective mAbs to FVIII. mAbs 8E3 and 22B6 displaced the binding of FVIII to vonWillebrand factor. Moreover, some of them (in particular mAbs 4G6 and 8E3) were able to compete for binding to the B domain with the anti-FVIII Abs from hemophilia A patients without inhibitor or with low Bethesda titers. Further investigation will allow to better characterize their clinical relevance.

* These authors contributed equally.


 
  • References

  • 1 Hoyer LW. Molecularpathologyand immunology of factor VIII (hemophilia A and factor VIII inhibitors). Hum Pathol 1987; 18: 153-161.
  • 2 Mann KG. Biochemistry and physiology of blood coagulation. Thromb Haemost 1999; 82: 165-174.
  • 3 Vehar GA, Keyt B, Eaton D. et al. Structure of human factor VIII. Nature 1984; 312: 337-342.
  • 4 Gitschier J, Wood WI, Goralka TM. et al. Characterization of the human factor VIII gene. Nature 1984; 312: 326-330.
  • 5 Pittman DD, Marquette KA, Kaufman RJ. Role of the B domain for factor VIII and factor V expression and function. Blood 1994; 84: 4214-4225.
  • 6 Kane WH, Davie EW. Blood coagulation factors V and VIII: structural and functional similarities and their relationship to hemorrhagic and thrombotic disorders. Blood 1988; 71: 539-555.
  • 7 Davidson CJ, Hirt RP, Lal K. et al. Molecular evolution of the vertebrate blood coagulation network. Thromb Haemost 2003; 89: 420-428.
  • 8 Toole JJ, Pittman DD, Orr EC. et al. A large region (approximately equal to 95 kDa) of human factor VIII is dispensable for in vitro procoagulant activity. Proc Natl Acad Sci USA 1986; 83: 5939-5942.
  • 9 Wiken M, Sjoberg K. Analysis of samples from patients treated with ReFacto for the presence of anti-SQpeptide specific antibodies. Semin Thromb Hemost 2002; 28: 297-308.
  • 10 Zhang B, Cunningham MA, Nichols WC. et al. Bleeding due to disruption of a cargo-specific ER-to Golgi transport complex. Nat Genet 2003; 34: 220-225.
  • 11 Zhang B, McGee B, Yamaoka JS. et al. Combined deficiency of factor V and factor VIII is due to mutations in either LMAN1 or MCFD2. Blood 2005; 107: 1903-1907.
  • 12 Bovenschen N, Rijken DC, Havekes LM. et al. The B domain of coagulation factor VIII interacts with the asialoglycoprotein receptor. J Thromb Haemost 2005; 3: 1257-1265.
  • 13 Bovenschen N, Boertjes RC, van Stempvoort G. et al. Low density lipoprotein receptor-related protein and factor IXa share structural requirements for binding to the A3 domain of coagulation factor VIII. J Biol Chem 2003; 278: 9370-9377.
  • 14 Saenko EL, Yakhyaev AV, Mikhailenko I. et al. Role of the low density lipoprotein-related protein receptor in mediation of factor VIII catabolism. J Biol Chem 1999; 274: 37685-37692.
  • 15 Ehrenforth S, Kreuz W, Scharrer I. et al. Incidence of development of factor VIII and factor IX inhibitors in haemophiliacs. Lancet 1992; 339: 594-598.
  • 16 Scandella D. Human anti-factor VIII antibodies: epitope localization and inhibitory function. Vox Sang 1996; 70: 9-14.
  • 17 Lavigne-Lissalde G, Schved JF, Granier C. et al. Anti-factor VIII antibodies: a 2005 update. Thromb Haemost 2005; 94: 760-769.
  • 18 Lacroix-Desmazes S, Moreau A, Sooryanarayana A. et al. Catalytic activity of antibodies against factor VIII in patients with hemophilia A. Nat Med 1999; 5: 1044-1047.
  • 19 Lacroix-Desmazes S, Bayry J, Misra N. et al. The prevalence of proteolytic antibodies against factor VIII in hemophilia A. N Engl J Med 2002; 346: 662-667.
  • 20 Fulcher CA, de GraafMahoney S, Roberts JR. et al. Localization of human factor FVIII inhibitor epitopes to two polypeptide fragments. Proc Natl Acad Sci USA 1985; 82: 7728-7732.
  • 21 Kazatchkine MD, Sultan Y, Burton-Kee EJ. et al. Circulating immune complexes containing anti-VIII antibodies in multi-transfused patients with haemophilia A. Clin Exp Immunol 1980; 39: 315-320.
  • 22 Mendez MJ, Green LL, Corvalan JR. et al. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 1997; 15: 146-156.
  • 23 Kellermann SA, Green LL. Antibody discovery: the use of transgenic mice to generate human monoclonal antibodies for therapeutics. Curr Opin Biotechnol 2002; 13: 593-597.
  • 24 Ray S, Diamond B. Generation of a fusion partner to sample the repertoire of splenic B cells destined for apoptosis. Proc Natl Acad Sci USA 1994; 91: 5548-5551.
  • 25 Frank R. The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports--principlesand applications. J Immunol Methods 2002; 267: 13-26.
  • 26 Granier C, Villard S, Laune D. Mapping and characterization of epitopes using the Spot method. In: Cell Biology: A Laboratory Handbook. 3rd Edition Academic Press; 2005
  • 27 Gausepohl CK, Boulin C, Kraft M. et al. Automated multiple peptide synthesis. Pept Res 1992; 5: 315-320.
  • 28 Regnault V, Beguin S, Lecompte T. Calibrated automated thrombin generation in frozen-thawed platelet-rich plasma to detect hypercoagulability. Pathophysiol Haemost Thromb 2003; 33: 23-29.
  • 29 Jacquemin MG, Desqueper BG, Benhida A. et al. Mechanism and kinetics of factor VIII inactivation: study with an IgG4 monoclonal antibody derived from a hemophilia A patient with inhibitor. Blood 1998; 92: 496-506.
  • 30 Kasper CK, Pool JG. Measurement of mild factor VIII inhibitors in Bethesda units. Thromb Diath Haemorrh 1975; 34: 875-876.
  • 31 Fulcher CA, de Graaf Mahoney S, Zimmerman TS. FVIII inhibitor IgG subclass and FVIII polypeptide specificity determined by immunoblotting. Blood 1987; 69: 1475-1480.
  • 32 Gilles JG, Arnout J, Vermylen J. et al. Anti-factor VIII antibodies of hemophiliac patients are frequently directed towards nonfunctional determinants and do not exhibit isotypic restriction. Blood 1993; 82: 2452-2461.
  • 33 Jacquemin M, Benhida A, Peerlinck K. et al. A human antibody directed to the factor VIII C1 domain inhibits factor VIII cofactor activity and binding to von Willebrand factor. Blood 2000; 95: 156-163.
  • 34 Van Den Brink EN, Turenhout EA, Davies J. et al. Human antibodies with specificity for the C2 domain of factor VIII are derived from VH1 germline genes. Blood 2000; 95: 558-563.
  • 35 Van Den Brink EN, Turenhout EA, Bank CM. et al. Molecular analysis of human anti-factor VIII antibodies by V gene phage display identifies a new epitope in the acidic region following the A2 domain. Blood 2000; 96: 540-545.
  • 36 Van Den Brink EN, Bril WS, Turenhout EA. et al. Two classes of germline genes both derived from the V(H) 1 family direct the formation of human antibodies that recognize distinct antigenicsitesinthe C2 domain of factor VIII. Blood 2002; 99: 2828-2834.
  • 37 Saenko EL, Shima M, Rajalakshmi KJ. et al. A role for the C2 domain of factor VIII in binding to von Willebrand factor. J Biol Chem 1994; 269: 11601-11605.
  • 38 Saenko EL, Scandella D. The acidic region of the factor VIII light chain and the C2 domain together form the high affinity binding site for von willebrand factor. J Biol Chem 1997; 272: 18007-18014.
  • 39 Fowler WE, Fay PJ, Arvan DS. et al. Electron microscopy of human factor V and factor VIII: correlation of morphology with domain structure and localization of factor V activation fragments. Proc Natl Acad Sci USA 1990; 87: 7648-7652.
  • 40 Lollar P, Hill-Eubanks DC, Parker CG. Association of the factor VIII light chain with von Willebrand factor. J Biol Chem 1988; 263: 10451-10455.