Thromb Haemost 2006; 96(06): 846-848
DOI: 10.1160/TH06-11-0627
Meeting Report
Schattauer GmbH

Satellite Symposium on “Haemostasis, Vascular Biology, and Infectious Agents”, September 3, 2006, Maastricht, The Netherlands

Richard A. Proctor
1   University of Wisconsin Medical School, Departments of Medical Microbiology/Immunology and Medicine, Madison, Wisconsin, USA
› Author Affiliations
Further Information

Publication History

Received 06 November 2006

Accepted 06 November 2006

Publication Date:
29 November 2017 (online)

 

 
  • References

  • 1 Herwald H, Morgelin M, Olsen A. et al. Activation of the contact-phase system on bacterial surfaces--a clue to serious complications in infectious diseases. Nat Med 1998; 04: 298-302.
  • 2 Persson K, Russell W, Morgelin M. et al. The conversion of fibrinogen to fibrin at the surface of curliated Escherichia coli bacteria leads to the generation of proinflammatory fibrinopeptides. J Biol Chem 2003; 278: 31884-90.
  • 3 Persson K, Morgelin M, Lindbom L. et al. Severe lung lesions caused by Salmonella are prevented by inhibition of the contact system. J Exp Med 2000; 192: 1415-24.
  • 4 Mattsson E, Herwald H, Cramer H. et al. Staphy-lococcus aureus induces release of bradykinin in human plasma. Infect Immun 2001; 69: 3877-82.
  • 5 Bengtson SH, Phagoo SB, Norrby-Teglund A. et al. Kinin receptor expression during Staphylococcus aureus infection. Blood 2006; 108: 2055-63.
  • 6 Bokarewa MI, Jin T, Tarkowski A. Staphylococcus aureus: Staphylokinase. Int J Biochem Cell Biol 2006; 38: 504-9.
  • 7 Que YA, Haefliger JA, Piroth L. et al. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med 201: 1627-1635 2005;
  • 8 Sinha B, Herrmann M. Mechanism and consequences of invasion of endothelial cells by Staphy-lococcus aureus . Thromb Haemost 2005; 94: 266-77.
  • 9 Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 2006; 04: 529-36.
  • 10 Josefsson E, Juuti K, Bokarewa M. et al. The surface protein Pls of methicillin-resistant Staphylococcus aureus is a virulence factor in septic arthritis. Infect Immun 2005; 73: 2812-7.
  • 11 Weidenmaier C, Peschel A, Xiong YQ. et al. Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 2005; 191: 1771–7, 2005. Erratum in: J Infect Dis 2005; 192: 355.
  • 12 Proctor RA, Christman G, Mosher DF. Fibronectin-induced agglutination of Staphylococcus aureus correlates with invasiveness. J Lab Clin Med 1984; 104: 455-69.
  • 13 Peacock SJ, Moore CE, Justice A. et al. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus . Infect Immun 2002; 70: 4987-96.
  • 14 Schröder A, Kland R, Peschel A. et al. Live cell imaging of phagosome maturation in Staphylococcus aureus infected human endothelial cells: Small colony variants are able to survive in lysosomes. Med Micro-biol Immunol (Berl). 2006 in press.
  • 15 Balwit JM, van Langevelde P, Vann JM. et al. Gentamicin-resistant menadione and hemin auxotrophic Staphylococcus aureus persist within cultured endothelial cells. J Infect Dis 1994; 170: 1033-7.
  • 16 Haslinger-Löffler B, Kahl BC, Grundmeier M. et al. Multiple virulence factors are required for Staphy-lococcus aureus-induced apoptosis in endothelial cells. Cell Microbiol 2005; 07: 1087-97.
  • 17 Rohde M, Muller E, Chhatwal GS. et al. Host cell caveolae act as an entry-port for group A streptococci. Cell Microbiol 2003; 05: 323-42.
  • 18 McArthur J, Medina E, Mueller A. et al. Intranasal vaccination with streptococcal fibronectin binding protein Sfb1 fails to prevent growth and dissemination of Streptococcus pyogenes in a murine skin infection model. Infect Immun 2004; 72: 7342-5.
  • 19 Wang B, Li S, Southern PJ. et al. Streptococcal modulation of cellular invasion via TGF- β1 signaling. Proc Natl Acad Sci U S A 2006; 103: 2380-5.
  • 20 Medina E, Rohde M, Chhatwal GS. Intracellular survival of Streptococcus pyogenes in polymorphonu- clear cells results in increased bacterial virulence. Infect Immun 2003; 71: 5376-80.
  • 21 Staali L, Bauer S, Morgelin M. et al. Streptococcus pyogenes bacteria modulate membrane traffic in human neutrophils and selectively inhibit azurophilic granule fusion with phagosomes. Cell Microbiol 2006; 08: 690-703.
  • 22 Orrling A, Kamme C, Stjernquist-Desatnik A. Penicillin V, loracarbef and clindamycin in tonsillar surface fluid during acute group A streptococcal pharyngotonsillitis. Scand J Infect Dis 2005; 37: 429-35.
  • 23 Chavakis T, Wiechmann K, Preissner KT. et al. Sta- phylococcus aureus interactions with the endothelium: the role of bacterial “secretable expanded repertoire adhesive molecules” (SERAM) in disturbing host defense systems. Thromb Haemost 2005; 94: 278-85.
  • 24 Harraghy N, Hussain M, Haggar A. et al. The adhesive and immunomodulating properties of the multi-functional Staphylococcus aureus protein Eap. Microbiology 2003; 149: 2701-77.
  • 25 Flock M, Flock JI. Rebinding of extracellular adherence protein Eap to Staphylococcus aureus can occur through a surface-bound neutral phosphatase. J Bacteriol 2001; 183: 3999-4003.
  • 26 Haggar A, Ehrnfelt C, Holgersson J. et al. The extracellular adherence protein from Staphylococcus aureus inhibits neutrophil binding to endothelial cells. Infect Immun 2004; 72: 6164-7.
  • 27 Athanasopoulos AN, Economopoulou M, Orlova VV, Sobke A, Schneider D, Weber H, Augustin HG, Eming SA, Schubert U, Linn T. et al. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms. Blood 2006; 107: 2720-7.
  • 28 Xie C, Alcaide P, Geisbrecht BV. et al. Suppression of experimental autoimmune encephalomyelitis by extracellular adherence protein of Staphylococcus aureus . J Exp Med 2006; 203: 985-94.
  • 29 Peerschke EI, Yin W, Grigg SE. et al. Blood platelets activate the classical pathway of human complement. J Thromb Haemost 2006; 04: 2035-42.
  • 30 Ghebrehiwet B, Peerschke EI. cC1q-R (calreticulin) and gC1q-R/p33: ubiquitously expressed multi-lig-and binding cellular proteins involved in inflammation and infection. Mol Immunol 2004; 41: 173-83.
  • 31 Bergmann S, Wild D, Diekmann O. et al. Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae . Mol Microbiol 2003; 49: 411-23.
  • 32 Molkanen T, Tyynela J, Helin J. et al. Enhanced activation of bound plasminogen on Staphylococcus aureus by staphylokinase. FEBS Lett 2002; 517: 72-8.
  • 33 Pancholi V, Fischetti VA. α-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 1998; 273: 14503-15.
  • 34 Miles LA, Dahlberg CM, Plescia J. et al. Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry 1991; 12; 30: 1682-91.
  • 35 Ehinger S, Schubert WD, Bergmann S. et al. Plasmin(ogen)-binding α-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites. J Mol Biol 2004; 343: 997-1005.
  • 36 Bergmann S, Rohde M, Preissner KT. et al. The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thromb Haemost 2005; 94: 304-11.
  • 37 Jarvelainen H, Puolakkainen P, Pakkanen S. et al. A role for decorin in cutaneous wound healing and angiogenesis. Wound Repair Regen 2006; 14: 443-52.
  • 38 Brown EL, Wooten RM, Johnson BJ. et al. Resistance to Lyme disease in decorin-deficient mice. J Clin Invest 2001; 107: 845-52.
  • 39 Laschke MW, Kerdudou S, Herrmann M. et al. Intravital fluorescence microscopy: a novel tool for the study of the interaction of Staphylococcus aureus with the microvascular endothelium in vivo . J Infect Dis 2005; 191: 435-43.
  • 40 Kerdudou S, Laschke MW, Sinha B. et al. Fibronectin binding proteins contribute to the adherence of Staphylococcus aureus to intact endothelium in vivo . Thromb Haemost 2006; 96: 183-9.