Thromb Haemost 2007; 97(05): 704-713
DOI: 10.1160/TH07-01-0066
Theme Issue Article
Schattauer GmbH

Platelet-derived chemokines in vascular biology

Philipp von Hundelshausen*
1   Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany
,
Frank Petersen*
2   Department of Immunology and Cell Biology, Forschungszentrum Borstel, Borstel, Germany
,
Ernst Brandt*
2   Department of Immunology and Cell Biology, Forschungszentrum Borstel, Borstel, Germany
› Institutsangaben
Financial support: This work was supported in part by Deutsche Forschungsgemeinschaft SFB/TR 22, Projekt A11 (EB, FP), SFB 367, Projekt C4 (EB), SFB 415, Projekt B6 (FP), FOR809 TP2 (PvH).
Weitere Informationen

Publikationsverlauf

Received 30. Januar 2007

Accepted after revision 25. Februar 2007

Publikationsdatum:
24. November 2017 (online)

Summary

Undoubtedly, platelets are key elements in the regulation of thrombosis and haemostasis. Along with their primary task to prevent blood loss from injured vessels, platelets have emerged as regulators of a variety of processes in the vasculature. Multiple challenges, from the contact and adhesion to subendothelial matrix after injury of the vessel wall, to interactions with blood cells in inflammatory conditions, result in platelet activation with concomitant shape change and release of numerous substances. Among these, chemokines have been found to modulate several processes in the vasculature, such as atherosclerosis and angiogenesis. In particular, the chemokines connective tissue activating protein III (CTAP-III) and its precursors, or truncation products (CXCL7), platelet factor 4, (PF4, CXCL4) and its variant PF4alt (CXCL4L1) or regulated upon activation and normal T cell expressed and secreted (RANTES, CCL5), have been investigated thoroughly. Defined common properties as their aptitude to bind glycosaminoglycans or their predisposition to associate and form homooligomers are prerequisites for their role in the vasculature and function in vivo. The current review summarizes the development of these single chemokines, and their cooperative effects that may in part be dependent on their physical interactions.

* All authors contributed equally to this publication.


 
  • References

  • 1 von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 2007; 100: 27-40.
  • 2 Thaulow E, Erikssen J, Sandvik L. et al. Blood platelet count and function are related to total and cardiovascular death in apparently healthy men. Circulation 1991; 84: 613-617.
  • 3 Baltus T, von Hundelshausen P, Mause SF. et al. Differential and additive effects of platelet-derived chemokines on monocyte arrest on inflamed endothelium under flow conditions. J Leukoc Biol 2005; 08: 435-441.
  • 4 Koenen RR, Weber C. Fine-tuning leukocyte responses: towards a chemokine “interactome”. Trends Immunol 2006; 27: 268-273.
  • 5 Schiemann F, Grimm TA, Hoch J. et al. Mast cells and neutrophils proteolytically activate chemokine precursor CTAP-III and are subject to counterregulation by PF-4 through inhibition of chymase and cathepsin G. Blood 2006; 107: 2234-2242.
  • 6 Boehlen F, Clemetson KJ. Platelet chemokines and their receptors: what is their relevance to platelet storage and transfusion practice?. Transfus Med 2001; 11: 403-417.
  • 7 Brandt E, Ludwig A, Petersen F. et al. Platelet-derived CXC chemokines: old players in new games. Immunol Rev 2000; 177: 204-216.
  • 8 Struyf S, Burdick MD, Proost P. et al. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis. Circ Res 2004; 95: 855-857.
  • 9 Klinger MH. Platelets and inflammation. Anat Embryol (Berl) 1997; 196: 1-11.
  • 10 Gear AR, Camerini D. Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation 2003; 10: 335-350.
  • 11 Massberg S, Konrad I, Schurzinger K. et al. Platelets secrete stromal cell-derived factor 1{alpha} and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J Exp Med 2006; 203: 1221-33.
  • 12 Schober A, Zernecke A. Chemokines in vascular remodelling. Thromb Haemost 2007; 97: 730-737.
  • 13 Klinger MH, Wilhelm D, Bubel S. et al. Immunocytochemical localization of the chemokines RANTES and MIP-1 alpha within human platelets and their release during storage. Int Arch Allergy Immunol 1995; 107: 541-546.
  • 14 Kameyoshi Y, Dorschner A, Mallet AI. et al. Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. J Exp Med 1992; 176: 587-592.
  • 15 Fujisawa T, Fujisawa R, Kato Y. et al. Presence of high contents of thymus and activation-regulated chemokine in platelets and elevated plasma levels of thymus and activation-regulated chemokine and macrophage- derived chemokine in patients with atopic dermatitis. J Allergy Clin Immunol 2002; 110: 139-146.
  • 16 Brandt E, Petersen F, Ludwig A. et al. The betathromboglobulins and platelet factor 4: blood plateletderived CXC chemokines with divergent roles in early neutrophil regulation. J Leukoc Biol 2000; 67: 471-478.
  • 17 Moore S, Pepper DS, Cash JD. The isolation and characterisation of a platelet-specific beta-globulin (beta-thromboglobulin) and the detection of antiurokinase and antiplasmin released from thrombin-aggregated washed human platelets. Biochim Biophys Acta 1975; 379: 360-369.
  • 18 Begg GS, Pepper DS, Chesterman CN. et al. Complete covalent structure of human beta-thromboglobulin. Biochemistry 1978; 17: 1739-1744.
  • 19 Majumdar S, Gonder D, Koutsis B. et al. Characterization of the human beta-thromboglobulin gene. Comparison with the gene for platelet factor 4. J Biol Chem 1991; 266: 5785-5789.
  • 20 Zhang C, Gadue P, Scott E. et al. Activation of the megakaryocyte-specific gene platelet basic protein (PBP) by the Ets family factor PU.1. J Biol Chem 1997; 272: 26236-26246.
  • 21 Holt JC, Rabellino EM, Gewirtz AM. et al. Occurrence of platelet basic protein, a precursor of low affinity platelet factor 4 and beta-thromboglobulin, in human platelets and megakaryocytes. Exp Hematol 1988; 16: 302-306.
  • 22 Resmi KR, Krishnan LK. Protease action and generation of beta-thromboglobulin-like protein followed by platelet activation. Thromb Res 2002; 106: 229-236.
  • 23 Brandt E, Van Damme J, Flad HD. Neutrophils can generate their activator neutrophil-activating peptide 2 by proteolytic cleavage of platelet-derived connective tissue-activating peptide III. Cytokine 1991; 03: 311-321.
  • 24 Walz A, Baggiolini M. Generation of the neutrophil- activating peptide NAP-2 from platelet basic protein or connective tissue-activating peptide III through monocyte proteases. J Exp Med 1990; 171: 449-454.
  • 25 Car BD, Baggiolini M, Walz A. Formation of neutrophil- activating peptide 2 from platelet-derived connective- tissue-activating peptide III by different tissue proteinases. Biochem J 1991; 275: 581-584.
  • 26 Harter L, Petersen F, Flad HD. et al. Connective tissue- activating peptide III desensitizes chemokine receptors on neutrophils. Requirement for proteolytic formation of the neutrophil-activating peptide 2. J Immunol 1994; 153: 5698-5708.
  • 27 Walz A, Dewald B, von Tscharner V. et al. Effects of the neutrophil-activating peptide NAP-2, platelet basic protein, connective tissue-activating peptide III and platelet factor 4 on human neutrophils. J Exp Med 1989; 170: 1745-1750.
  • 28 Castor CW, Walz DA, Johnson PH. et al. Connective tissue activation. XXXIV: Effects of proteolytic processing on the biologic activities of CTAP-III. J Lab Clin Med 1990; 116: 516-526.
  • 29 Tai PK, Liao JF, Hossler PA. et al. Regulation of glucose transporters by connective tissue activating peptide-III isoforms. J Biol Chem 1992; 267: 19579-19586.
  • 30 Iida N, Haisa M, Igarashi A. et al. Leukocyte-derived growth factor links the PDGF and CXC chemokine families of peptides. Faseb J 1996; 10: 1336-1345.
  • 31 Pillai MM, Iwata M, Awaya N. et al. Monocyte-derived CXCL7 peptides in the marrow microenvironment. Blood 2006; 107: 3520-3526.
  • 32 Han ZC, Bellucci S, Walz A. et al. Negative regulation of human megakaryocytopoiesis by human platelet factor 4 (PF4) and connective tissue-activating peptide (CTAP-III). Int J Cell Cloning 1990; 08: 253-259.
  • 33 Gewirtz AM, Zhang J, Ratajczak J. et al. Chemokine regulation of human megakaryocytopoiesis. Blood 1995; 86: 2559-2567.
  • 34 Oda M, Kurasawa Y, Todokoro K. et al. Thrombopoietin- induced CXC chemokines, NAP-2 and PF4, suppress polyploidization and proplatelet formation during megakaryocyte maturation. Genes Cells 2003; 08: 9-15.
  • 35 Abgrall JF, Berthou C, Cauvin JM. et al. Spontaneous in vitro megakaryocyte colony formation in primary thrombocythemia: relation to platelet factor 4 plasma level and beta-thromboglobulin/platelet factor 4 ratio. Acta Haematol 1992; 87: 118-121.
  • 36 Emadi S, Clay D, Desterke C. et al. IL-8 and its CXCR1 and CXCR2 receptors participate in the control of megakaryocytic proliferation, differentiation, and ploidy in myeloid metaplasia with myelofibrosis. Blood 2005; 105: 464-473.
  • 37 Clark-Lewis I, Dewald B, Loetscher M. et al. Structural requirements for interleukin-8 function identified by design of analogs and CXC chemokine hybrids. J Biol Chem 1994; 269: 16075-16081.
  • 38 Yan Z, Zhang J, Holt JC. et al. Structural requirements of platelet chemokines for neutrophil activation. Blood 1994; 84: 2329-2339.
  • 39 Malkowski MG, Lazar JB, Johnson PH. et al. The amino-terminal residues in the crystal structure of connective tissue activating peptide-III (des10) block the ELR chemotactic sequence. J Mol Biol 1997; 266: 367-380.
  • 40 Petersen F, Flad HD, Brandt E. Neutrophil-activating peptides NAP-2 and IL-8 bind to the same sites on neutrophils but interact in different ways. Discrepancies in binding affinities, receptor densities, and biologic effects. J Immunol 1994; 152: 2467-2478.
  • 41 Ehlert JE, Ludwig A, Grimm TA. et al. Down-regulation of neutrophil functions by the ELR(+) CXC chemokine platelet basic protein. Blood 2000; 96: 2965-2972.
  • 42 Schenk BI, Petersen F, Flad HD. et al. Platelet-derived chemokines CXC chemokine ligand (CXCL)7, connective tissue-activating peptide III, and CXCL4 differentially affect and cross-regulate neutrophil adhesion and transendothelial migration. J Immunol 2002; 169: 2602-2610.
  • 43 Schwartzkopff F, Brandt E, Petersen F. et al. The CXC chemokine NAP-2 mediates differential heterologous desensitization of neutrophil effector functions elicited by platelet-activating factor. J Interferon Cytokine Res 2002; 22: 257-267.
  • 44 Loetscher P, Seitz M, Clark-Lewis I. et al. Both interleukin- 8 receptors independently mediate chemotaxis. Jurkat cells transfected with IL-8R1 or IL-8R2 migrate in response to IL-8, GRO alpha and NAP-2. FEBS Lett 1994; 341: 187-192.
  • 45 Ahuja SK, Murphy PM. The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J Biol Chem 1996; 271: 20545-20550.
  • 46 Ludwig A, Petersen F, Zahn S. et al. The CXC-chemokine neutrophil-activating peptide-2 induces two distinct optima of neutrophil chemotaxis by differential interaction with interleukin-8 receptors CXCR-1 and CXCR-2. Blood 1997; 90: 4588-4597.
  • 47 Ehlert JE, Gerdes J, Flad HD. et al. Novel C-terminally truncated isoforms of the CXC chemokine betathromboglobulin and their impact on neutrophil functions. J Immunol 1998; 161: 4975-4982.
  • 48 Ehlert JE, Petersen F, Kubbutat MH. et al. Limited and defined truncation at the C terminus enhances receptor binding and degranulation activity of the neutrophil- activating peptide 2 (NAP-2). Comparison of native and recombinant NAP-2 variants. J Biol Chem 1995; 270: 6338-6344.
  • 49 Krijgsveld J, Zaat SA, Meeldijk J. et al. Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J Biol Chem 2000; 275: 20374-20381.
  • 50 Dankert J, Krijgsveld J, van Der Werff J. et al. Platelet microbicidal activity is an important defense factor against viridans streptococcal endocarditis. J Infect Dis 2001; 184: 597-605.
  • 51 Schnitzel W, Monschein U, Besemer J. Monomerdimer equilibria of interleukin-8 and neutrophil-activating peptide 2. Evidence for IL-8 binding as a dimer and oligomer to IL-8 receptor B. J Leukoc Biol 1994; 55: 763-770.
  • 52 Deuel TF, Keim PS, Farmer M. et al. Amino acid sequence of human platelet factor 4. Proc Natl Acad Sci USA 1977; 74: 2256-2258.
  • 53 Deuel TF, Senior RM, Chang D. et al. Platelet factor 4 is chemotactic for neutrophils and monocytes. Proc Natl Acad Sci USA 1981; 78: 4584-4587.
  • 54 Bebawy ST, Gorka J, Hyers TM. et al. In vitro effects of platelet factor 4 on normal human neutrophil functions. J Leukoc Biol 1986; 39: 423-434.
  • 55 Clark-Lewis I, Dewald B, Geiser T. et al. Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu- Leu-Arg. Proc Natl Acad Sci USA 1993; 90: 3574-3577.
  • 56 Petersen F, Ludwig A, Flad HD. et al. TNF-alpha renders human neutrophils responsive to platelet factor 4. Comparison of PF-4 and IL-8 reveals different activity profiles of the two chemokines. J Immunol 1996; 156: 1954-1962.
  • 57 Fleischer J, Grage-Griebenow E, Kasper B. et al. Platelet factor 4 inhibits proliferation and cytokine release of activated human T cells. J Immunol 2002; 169: 770-777.
  • 58 Pervushina O, Scheuerer B, Reiling N. et al. Platelet factor 4/CXCL4 induces phagocytosis and the generation of reactive oxygen metabolites in mononuclear phagocytes independently of Gi protein activation or intracellular calcium transients. J Immunol 2004; 173: 2060-2067.
  • 59 Brandt E, Ernst M, Loppnow H. et al. Characterization of a platelet derived factor modulating phagocyte functions and cooperating with interleukin 1. Lymphokine Res 1989; 08: 281-287.
  • 60 Walz A, Baggiolini M. A novel cleavage product of beta-thromboglobulin formed in cultures of stimulated mononuclear cells activates human neutrophils. Biochem Biophys Res Commun 1989; 159: 969-975.
  • 61 Schaffner A, Rhyn P, Schoedon G. et al. Regulated expression of platelet factor 4 in human monocytes-- role of PARs as a quantitatively important monocyte activation pathway. J Leukoc Biol 2005; 78: 202-209.
  • 62 Lasagni L, Grepin R, Mazzinghi B. et al. PF- 4/CXCL4 and CXCL4L1 exhibit distinct subcellular localization and a differentially regulated mechanism of secretion. Blood. 2007 epub ahead of print
  • 63 Files JC, Malpass TW, Yee EK. et al. Studies of human plate alpha-granule release in vivo. Blood 1981; 58: 607-618.
  • 64 Levine SP, Krentz LS. Development of a radioimmunoassay for human platelet factor 4. Thromb Res 1977; 11: 673-686.
  • 65 Green CJ, Charles RS, Edwards BF. et al. Identification and characterization of PF4varl, a human gene variant of platelet factor 4. Mol Cell Biol 1989; 09: 1445-1451.
  • 66 Eisman R, Surrey S, Ramachandran B. et al. Structural and functional comparison of the genes for human platelet factor 4 and PF4alt. Blood 1990; 76: 336-344.
  • 67 Petersen F, Bock L, Flad HD. et al. A chondroitin sulfate proteoglycan on human neutrophils specifically binds platelet factor 4 and is involved in cell activation. J Immunol 1998; 161: 4347-4355.
  • 68 Kasper B, Brandt E, Ernst M. et al. Neutrophil adhesion to endothelial cells induced by platelet factor 4 requires sequential activation of Ras, Syk, and JNK MAP kinases. Blood 2006; 107: 1768-1775.
  • 69 Kasper B, Brandt E, Bulfone-Paus S. et al. Platelet factor 4 (PF-4)-induced neutrophil adhesion is controlled by src-kinases while PF-4-mediated exocytosis requires the additional activation of p38 MAP kinase and phosphatidylinositol 3-kinase. Blood 2004; 103: 1602-1610.
  • 70 Lasagni L, Francalanci M, Annunziato F. et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 2003; 197: 1537-1549.
  • 71 Han ZC, Lu M, Li J. et al. Platelet factor 4 and other CXC chemokines support the survival of normal hematopoietic cells and reduce the chemosensitivity of cells to cytotoxic agents. Blood 1997; 89: 2328-2335.
  • 72 Luster AD, Greenberg SM, Leder P. The IP-10 chemokine binds to a specific cell surface heparan sulfate site shared with platelet factor 4 and inhibits endothelial cell proliferation. J Exp Med 1995; 182: 219-231.
  • 73 Watson JB, Getzler SB, Mosher DF. Platelet factor 4 modulates the mitogenic activity of basic fibroblast growth factor. J Clin Invest 1994; 94: 261-268.
  • 74 Gengrinovitch S, Greenberg SM, Cohen T. et al. Platelet factor-4 inhibits the mitogenic activity of VEGF121 and VEGF165 using several concurrent mechanisms. J Biol Chem 1995; 270: 15059-15065.
  • 75 Maione TE, Gray GS, Petro J. et al. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 1990; 247: 77-79.
  • 76 Tanaka T, Manome Y, Wen P. et al. Viral vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth. Nat Med 1997; 03: 437-442.
  • 77 Perollet C, Han ZC, Savona C. et al. Platelet factor 4 modulates fibroblast growth factor 2 (FGF-2) activity and inhibits FGF-2 dimerization. Blood 1998; 91: 3289-3299.
  • 78 Sulpice E, Contreres JO, Lacour J. et al. Platelet factor 4 disrupts the intracellular signalling cascade induced by vascular endothelial growth factor by both KDR dependent and independent mechanisms. Eur J Biochem 2004; 271: 3310-3318.
  • 79 Scheuerer B, Ernst M, Durrbaum-Landmann I. et al. The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages. Blood 2000; 95: 1158-1166.
  • 80 Liu CY, Battaglia M, Lee SH. et al. Platelet factor 4 differentially modulates CD4+CD25+ (regulatory) versus CD4+CD25– (nonregulatory) T cells. J Immunol 2005; 174: 2680-2686.
  • 81 Vaddi K, Newton RC. Comparison of biological responses of human monocytes and THP-1 cells to chemokines of the intercrine-beta family. J Leukoc Biol 1994; 55: 756-762.
  • 82 von Hundelshausen P, Koenen RR, Sack M. et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 2005; 105: 924-930.
  • 83 Fricke I, Mitchell D, Petersen F. et al. Platelet factor 4 in conjunction with IL-4 directs differentiation of human monocytes into specialized antigen-presenting cells. Faseb J 2004; 18: 1588-1590.
  • 84 Petersen F, Bock L, Flad HD. et al. Platelet factor 4-induced neutrophil-endothelial cell interaction: involvement of mechanisms and functional consequences different from those elicited by interleukin-8. Blood 1999; 94: 4020-4028.
  • 85 Marti F, Bertran E, Llucia M. et al. Platelet factor 4 induces human natural killer cells to synthesize and release interleukin-8. J Leukoc Biol 2002; 72: 590-597.
  • 86 Romagnani P, Maggi L, Mazzinghi B. et al. CXCR3-mediated opposite effects of CXCL10 and CXCL4 on TH1 or TH2 cytokine production. J Allergy Clin Immunol 2005; 116: 1372-1379.
  • 87 Han ZC, Sensebe L, Abgrall JF. et al. Platelet factor 4 inhibits human megakaryocytopoiesis in vitro. Blood 1990; 75: 1234-1239.
  • 88 Hayashi N, Chihara J, Kobayashi Y. et al. Effect of platelet-activating factor and platelet factor 4 on eosinophil adhesion. Int Arch Allergy Immunol 1994; 104 (Suppl. 01) Suppl 57-59.
  • 89 Schall TJ, Jongstra J, Dyer BJ. et al. A human T cellspecific molecule is a member of a new gene family. J Immunol 1988; 141: 1018-1025.
  • 90 Schall TJ, Bacon K, Toy KJ. et al. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 1990; 347: 669-671.
  • 91 Rot A, Krieger M, Brunner T. et al. RANTES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes. J Exp Med 1992; 176: 1489-1495.
  • 92 Nesmelova IV, Sham Y, Dudek AZ. et al. Platelet factor 4 and interleukin-8 CXC chemokine heterodimer formation modulates function at the quaternary structural level. J Biol Chem 2005; 280: 4948-4958.
  • 93 Skelton NJ, Aspiras F, Ogez J. et al. Proton NMR assignments and solution conformation of RANTES, a chemokine of the C-C type. Biochemistry 1995; 34: 5329-5342.
  • 94 Wang JM, McVicar DW, Oppenheim JJ. et al. Identification of RANTES receptors on human monocytic cells: competition for binding and desensitization by homologous chemotactic cytokines. J Exp Med 1993; 177: 699-705.
  • 95 Van Riper G, Siciliano S, Fischer PA. et al. Characterization and species distribution of high affinity GTP-coupled receptors for human rantes and monocyte chemoattractant protein 1. J Exp Med 1993; 177: 851-856.
  • 96 Gao JL, Kuhns DB, Tiffany HL. et al. Structure and functional expression of the human macrophage inflammatory protein 1 alpha/RANTES receptor. J Exp Med 1993; 177: 1421-1427.
  • 97 Neote K, DiGregorio D, Mak JY. et al. Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell 1993; 72: 415-425.
  • 98 Murphy PM, Baggiolini M, Charo IF. et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000; 52: 145-176.
  • 99 Combadiere C, Ahuja SK, Murphy PM. Cloning and functional expression of a human eosinophil CC chemokine receptor. J Biol Chem 1995; 270: 16491-16494.
  • 100 Power CA, Meyer A, Nemeth K. et al. Molecular cloning and functional expression of a novel CC chemokine receptor cDNA from a human basophilic cell line. J Biol Chem 1995; 270: 19495-19500.
  • 101 Raport CJ, Gosling J, Schweickart VL. et al. Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-1beta, and MIP-1alpha. J Biol Chem 1996; 271: 17161-17166.
  • 102 Combadiere C, Ahuja SK, Tiffany HL. et al. Cloning and functional expression of CC CKR5, a human monocyte CC chemokine receptor selective for MIP- 1(alpha), MIP-1(beta), and RANTES. J Leukoc Biol 1996; 60: 147-152.
  • 103 Cocchi F, DeVico AL, Garzino-Demo A. et al. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270: 1811-1815.
  • 104 Lim JK, Glass WG, McDermott DH. et al. CCR5: no longer a “good for nothing” gene--chemokine control of West Nile virus infection. Trends Immunol 2006; 27: 308-312.
  • 105 Dragic T, Litwin V, Allaway GP. et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381: 667-673.
  • 106 Feng Y, Broder CC, Kennedy PE. et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272: 872-877.
  • 107 Bacon KB, Szabo MC, Yssel H. et al. RANTES induces tyrosine kinase activity of stably complexed p125FAK and ZAP-70 in human T cells. J Exp Med 1996; 184: 873-882.
  • 108 Gong JH, Uguccioni M, Dewald B. et al. RANTES and MCP-3 antagonists bind multiple chemokine receptors. J Biol Chem 1996; 271: 10521-10527.
  • 109 Oravecz T, Pall M, Roderiquez G. et al. Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. J Exp Med 1997; 186: 1865-1872.
  • 110 Weber C, Weber KS, Klier C. et al. Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and T(H)1-like/ CD45RO(+) T cells. Blood 2001; 97: 1144-1146.
  • 111 Nieto M, Frade JM, Sancho D. et al. Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis. J Exp Med 1997; 186: 153-158.
  • 112 Chuluyan HE, Schall TJ, Yoshimura T. et al. IL-1 activation of endothelium supports VLA-4 (CD49d/ CD29)-mediated monocyte transendothelial migration to C5a, MIP-1 alpha, RANTES, and PAF but inhibits migration to MCP-1: a regulatory role for endothelium- derived MCP-1. J Leukoc Biol 1995; 58: 71-79.
  • 113 Szabo MC, Butcher EC, McIntyre BW. et al. RANTES stimulation of T lymphocyte adhesion and activation: role for LFA-1 and ICAM-3. Eur J Immunol 1997; 27: 1061-1068.
  • 114 Bacon KB, Premack BA, Gardner P. et al. Activation of dual T cell signaling pathways by the chemokine RANTES. Science 1995; 269: 1727-1730.
  • 115 Appay V, Dunbar PR, Cerundolo V. et al. RANTES activates antigen-specific cytotoxic T lymphocytes in a mitogen-like manner through cell surface aggregation. Int Immunol 2000; 12: 1173-1182.
  • 116 Gilat D, Hershkoviz R, Mekori YA. et al. Regulation of adhesion of CD4+ T lymphocytes to intact or heparinase-treated subendothelial extracellular matrix by diffusible or anchored RANTES and MIP-1 beta. J Immunol 1994; 153: 4899-4906.
  • 117 von Hundelshausen P, Weber KS, Huo Y. et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 2001; 103: 1772-1777.
  • 118 Zhang X, Chen L, Bancroft DP. et al. Crystal structure of recombinant human platelet factor 4. Biochemistry 1994; 33: 8361-8366.
  • 119 Martin L, Blanpain C, Garnier P. et al. Structural and functional analysis of the RANTES-glycosaminoglycans interactions. Biochemistry 2001; 40: 6303-6318.
  • 120 Proudfoot AE, Fritchley S, Borlat F. et al. The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. J Biol Chem 2001; 276: 10620-10626.
  • 121 Proudfoot AE, Handel TM, Johnson Z. et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci USA 2003; 100: 1885-1890.
  • 122 Czaplewski LG, McKeating J, Craven CJ. et al. Identification of amino acid residues critical for aggregation of human CC chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and RANTES. Characterization of active disaggregated chemokine variants. J Biol Chem 1999; 274: 16077-16084.
  • 123 Baltus T, Weber KS, Johnson Z. et al. Oligomerization of RANTES is required for CCR1-mediated arrest but not CCR5-mediated transmigration of leukocytes on inflamed endothelium. Blood 2003; 102: 1985-1988.
  • 124 Witt DP, Lander AD. Differential binding of chemokines to glycosaminoglycan subpopulations. Curr Biol 1994; 04: 394-400.
  • 125 Hoogewerf AJ, Kuschert GS, Proudfoot AE. et al. Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry 1997; 36: 13570-13578.
  • 126 Ali S, Palmer AC, Banerjee B. et al. Examination of the function of RANTES, MIP-1alpha, and MIP- 1beta following interaction with heparin-like glycosaminoglycans. J Biol Chem 2000; 275: 11721-11727.
  • 127 Huo Y, Schober A, Forlow SB. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 09: 61-67.
  • 128 Massberg S, Brand K, Gruner S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196: 887-896.
  • 129 Mause SF, von Hundelshausen P, Zernecke A. et al. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 2005; 25: 1512-1518.
  • 130 Schober A, Manka D, von Hundelshausen P. et al. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 2002; 106: 1523-1529.
  • 131 Veillard NR, Kwak B, Pelli G. et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res 2004; 94: 253-61.
  • 132 Simeoni E, Winkelmann BR, Hoffmann MM. et al. Association of RANTES G-403A gene polymorphism with increased risk of coronary arteriosclerosis. Eur Heart J 2004; 25: 1438-1446.
  • 133 Rothenbacher D, Muller-Scholze S, Herder C. et al. Differential expression of chemokines, risk of stable coronary heart disease, and correlation with established cardiovascular risk markers. Arterioscler Thromb Vasc Biol 2006; 26: 194-199.
  • 134 Muhlhauser I, Schernthaner G, Silberbauer K. et al. Platelet proteins (beta-TG and PF4) in atherosclerosis and related diseases. Artery 1980; 08: 73-79.
  • 135 Levine SP, Lindenfeld J, Ellis JB. et al. Increased plasma concentrations of platelet factor 4 in coronary artery disease: a measure of in vivo platelet activation and secretion. Circulation 1981; 64: 626-632.
  • 136 O'Brien JR, Etherington MD, Pashley M. Intraplatelet platelet factor 4 (IP.PF4) and the heparin-mobilisable pool of PF4 in health and atherosclerosis. Thromb Haemost 1984; 51: 354-357.
  • 137 Pitsilos S, Hunt J, Mohler ER. et al. Platelet factor 4 localization in carotid atherosclerotic plaques: correlation with clinical parameters. Thromb Haemost 2003; 90: 1112-1120.
  • 138 Sachais BS, Kuo A, Nassar T. et al. Platelet factor 4 binds to low-density lipoprotein receptors and disrupts the endocytic machinery, resulting in retention of low-density lipoprotein on the cell surface. Blood 2002; 99: 3613-3622.
  • 139 Nassar T, Sachais BS, Akkawi S. et al. Platelet factor 4 enhances the binding of oxidized low-density lipoprotein to vascular wall cells. J Biol Chem 2003; 278: 6187-6193.
  • 140 Smith C, Damas JK, Otterdal K. et al. Increased levels of neutrophil-activating peptide-2 in acute coronary syndromes: possible role of platelet-mediated vascular inflammation. J Am Coll Cardiol 2006; 48: 1591-1599.
  • 141 Lambert MP, Sachais BS, Kowalska MA. Chemokines and thrombogenecity. Thromb Haemost 2007; 97: 722-729.
  • 142 Rhee JS, Black M, Schubert U. et al. The functional role of blood platelet components in angiogenesis. Thromb Haemost 2004; 92: 394-402.
  • 143 Brill A, Elinav H, Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res 2004; 63: 226-235.
  • 144 Hristov M, Zernecke A, Bidzhekov K. et al. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res. 2007 epub ahead of print