Thromb Haemost 2007; 98(02): 287-295
DOI: 10.1160/TH07-02-0155
Theme Issue Article
Schattauer GmbH

Regulation of hyaluronan synthesis by vasodilatory prostaglandins

Implications for atherosclerosis
Jens W. Fischer
1   Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
,
Karsten Schrör
1   Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 28. Februar 2007

Accepted after revision 09. Mai 2007

Publikationsdatum:
28. November 2017 (online)

Summary

Hyaluronan (HA) is a macromolecular polysaccharide of the vascular extracellular matrix that confers both structural functions as well as signalling activity. HA is involved in a wide variety of biological processes, such as tissue morphogenesis, malignant growth and metastasis, wound healing and angiogenesis. In atherosclerosis, HA associates with leukocytes and vascular smooth muscle cells (VSMC) and is involved in vascular remodelling. HA is synthesized at the plasma membrane by three HAsynthase isoforms (HAS1–3). Human VSMC upregulate HAS1 and HAS2 in response to prostaglandins via Gs-coupled prostaglandin receptor subtypes IP and EP2. This review discusses the regulation of HA-synthesis by prostaglandins and the evidence for a central role of cyclooxygenase-2/PGE2 in regulation of HAsynthesis during atherogenesis.

 
  • References

  • 1 Meyer K, Palmer JW. The polysaccharide of thevitreous humor. J Biol Chem 1934; 107: 629-634.
  • 2 Toole BP. et al. Hyaluronan-cell interactions in cancer and vascular disease. J Biol Chem 2002; 277: 4593-4596.
  • 3 Day AJ, Prestwich GD. Hyaluronan-binding proteins: tying up the giant. J Biol Chem 2002; 277: 4585-4588.
  • 4 Margolis RU, Margolis RK. Aggrecan-versicanneurocan family proteoglycans. Methods Enzymol 1994; 245: 105-126.
  • 5 Yao LY. et al. Identification of the proteoglycan versican in aorta and smooth muscle cells by DNA sequence analysis, in situ hybridization and immunohistochemistry. Matrix Biol 1994; 14: 213-225.
  • 6 Lee TH. et al. Anovel secretorytumor necrosis factor-inducibleprotein(TSG-6) is amember of the family of hyaluronate binding proteins, closelyrelated to the adhesion receptor CD44. J Cell Biol 1992; 116: 545-557.
  • 7 Prehm P. Biosynthesis of hyaluronan: direction of chain elongation. Biochem J 2006; 398: 469-473.
  • 8 Prehm P. Hyaluronate is synthesized at plasma membranes. Biochem J 1984; 220: 597-600.
  • 9 De Angelis PL. Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase. J Biol Chem 1999; 274: 26557-26562.
  • 10 Spicer AP. et al. Chromosomal localization of the human and mouse hyaluronan synthase genes. Genomics 1997; 41: 493-497.
  • 11 Itano N. et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 1999; 274: 25085-25092.
  • 12 Camenisch TD. et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 2000; 106: 349-360.
  • 13 Mc Donald JA, Camenisch TD. Hyaluronan: genetic insights into the complex biology of a simple polysaccharide. Glycoconj J 2002; 19: 331-339.
  • 14 Csoka AB. et al. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol 2001; 20: 499-508.
  • 15 Stern R, Jedrzejas MJ. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev 2006; 106: 818-839.
  • 16 Fieber C. et al. Hyaluronan-oligosaccharide-induced transcription of metalloproteases. J Cell Sci 2004; 117: 359-367.
  • 17 Wolf D. et al. Low-molecular-weighthyaluronic acid induces nuclear factor-kappaB-dependent resistance against tumor necrosis factor alpha-mediated liver injury in mice. Hepatology 2001; 34: 535-547.
  • 18 Stern R. et al. Hyaluronan fragments: an information-rich system. Eur J Cell Biol 2006; 85: 699-715.
  • 19 Noble PW. et al. Hyaluronate activation of CD44 induces insulin-like growth factor-1 expression by a tumor necrosis factor-alpha-dependent mechanism in murine macrophages. J Clin Invest 1993; 91: 2368-2377.
  • 20 Evanko SP. et al. Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999; 19: 1004-1013.
  • 21 Jiang D. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 2005; 11: 1173-1179.
  • 22 Jiang D. et al. The role of Toll-like receptors in non-infectious lung injury. Cell Res 2006; 16: 693-701.
  • 23 Powell JD, Horton MR. Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res 2005; 31: 207-218.
  • 24 Bajorath J. et al. Identification of CD44 residues important for hyaluronan binding and delineation of the binding site. J Biol Chem 1998; 273: 338-343.
  • 25 Weber GF. et al. Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science 1996; 271: 509-512.
  • 26 Jalkanen S, Jalkanen M. Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J Cell Biol 1992; 116: 817-825.
  • 27 Bourguignon LYW. et al. CD44 is of orm-cytoskeleton interaction in oncogenic signaling and tumorprogression. Front Biosci 1998; 3: D637-649.
  • 28 Fujita Y. et al. CD44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett 2002; 528: 101-108.
  • 29 Mohapatra S. et al. Soluble hyaluronan receptor RHAMM induces mitotic arrest by suppressing Cdc2 and cyclin B1 expression. J Exp Med 1996; 183: 1663-1668.
  • 30 Assmann V. et al. The human hyaluronan receptor RHAMM is expressed as an intracellular protein in breast cancer cells. J Cell Sci 1998; 111: 1685-1694.
  • 31 Savani RC. et al. Migration of bovine aortic smooth muscle cells after wounding injury: the role of hyaluronan and RHAMM. J Clin Invest 1995; 95: 1158-1168.
  • 32 Goueffic Y. et al. Hyaluronan induces vascular smooth muscle cell migration through RHAMM-mediated PI3K-dependent Rac activation. Cardiovasc Res 2006; 72: 339-348.
  • 33 Evanko SP, Wight TN. Intracellular localization of hyaluronan in proliferating cells. J Histochem Cytochem 1999; 47: 1331-1342.
  • 34 Cook DN. et al. Toll-like receptors in the pathogenesis of human disease. Nat Immunol 2004; 5: 975-979.
  • 35 Termeer C. et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 2002; 195: 99-111.
  • 36 Taylor KR. et al. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J Biol Chem 2004; 279: 17079-17084.
  • 37 Nakamura T. et al. Hyaluronic-acid-deficient extra-cellular matrix induced by addition of 4-methylumbelliferone to the medium of cultured human skin fibrob-lasts. Biochem Biophys Res Commun 1995; 208: 470-475.
  • 38 Nakamura T. et al. Effect of 4-methylumbelliferone on cell-free synthesis of hyaluronic acid. Biochem Mol Biol Int 1997; 43: 263-268.
  • 39 Nakazawa H. et al. 4-methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells. Cancer Chemother Pharmacol 2006; 57: 165-170.
  • 40 Hajime M. et al. Inhibitory effect of 4-methylesculetin on hyaluronan synthesis slows the development of human pancreatic cancer in vitro and in nude mice. Int J Cancer 2007; 120: 2704-2709.
  • 41 Mummert ME. et al. Development of apeptide inhibitor of hyaluronan-mediated leukocyte trafficking. J Exp Med 2000; 192: 769-779.
  • 42 Miyake K. et al. Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J Exp Med 1990; 171: 477-488.
  • 43 Bartolazzi A. et al. Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J Exp Med 1994; 180: 53-66.
  • 44 Camp RL. et al. CD44 is necessary for optimal contact allergic responses but is not required for normal leukocyte extravasation. J Exp Med 1993; 178: 497-507.
  • 45 Woditsch I, Schror K. Prostacyclin ratherthan endogenous nitric oxide is a tissue protective factor in myocardial ischemia. Am J Physiol 1992; 263: H1390-1396.
  • 46 Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001; 294: 1871-1875.
  • 47 Schönbeck U. et al. Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions. Am J Pathol 1999; 155: 1281-1291.
  • 48 McGeer PL. et al. Expression of COX-1 and COX-2 mRNAs in atherosclerotic plaques. Exp Gerontol 2002; 37: 925-929.
  • 49 Schrör K. Eicosanoid generation and effects in cardiac muscle and coronary vessels. Chichester, England: John Wiley & Sons, Ltd.; 2004: 393-404.
  • 50 Jakobsson PJ. et al. Identification of human pros-taglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drugtarget. Proc Natl Acad Sci USA 1999; 96: 7220-7225.
  • 51 Murakami M, Kudo I. Prostagl and in E synthase: a noveld rug target for inflammation and cancer. Curr Pharm Des 2006; 12: 943-954.
  • 52 Pini B. et al. Prostaglandin E synthases in zebrafish. Arterioscler Thromb Vasc Biol 2005; 25: 315-320.
  • 53 Murakami M. et al. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated pros-taglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem 2000; 275: 32783-32792.
  • 54 Catley MC. et al. IL-1beta-dependent activation of NF-kappaB mediates PGE2 release via the expression of cyclooxygenase-2 and microsomal prostagland in E synthase. FEBS Lett 2003; 547: 75-79.
  • 55 Schneider A. et al. Membrane-associated PGE synthase-1 (mPGES-1) is coexpressed with both COX-1 and COX-2 in thekidney. Kidney Int 2004; 65: 1205-1213.
  • 56 Coleman RA. et al. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 1994; 46: 205-229.
  • 57 Blindt R. et al. Activation of IP and EP(3) receptors alters cAMP-dependent cell migration. Eur J Pharmacol 2002; 444: 31-37.
  • 58 Zucker TP. et al. Tolerance development to antimitogenic actions of prostacyclin but not of prostaglandin E1 in coronary artery smooth muscle cells. Eur J Pharmacol 1998; 345: 213-220.
  • 59 Bulin C. et al. Differential effects of vasodilatory prostaglandins on focal adhesions, cytoskeletal architecture, and migration in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 2005; 25: 84-89.
  • 60 Koyama D. et al. The enhanced production of hyaluronic acid by cultured rat fibroblast cells treated with cyclic AMP and its dibutyryl derivative. J Cell Physiol 1975; 87: 189-197.
  • 61 Yaron M. et al. Interrelationship between stimulation of prostaglandin E and hyaluronate production by poly (I) .poly(C) and interferon in synovial fibrob-last culture. Arthritis Rheum 1978; 21: 694-698.
  • 62 Murota S. et al. Stimulatory effect of prostaglandins on the production of hexosamine-containing substances by cultured fibroblasts (3) induction of hyaluronic acid synthetase by prostaglandin F2alpha. Pros-taglandins 1977; 14: 983-991.
  • 63 Mahadevan P. et al. Increased hyaluronan production in the glomeruli from diabetic rats: a link between glucose-induced prostaglandin production and reduced sulphated proteoglycan. Diabetologia 1995; 38: 298-305.
  • 64 Osmers R. et al. Glycosaminoglycans in cervical connective tissue during pregnancy and parturition. Obstet Gynecol 1993; 81: 88-92.
  • 65 Honda A. et al. Prostaglandin E2 stimulates cyclic AMP-mediated hyaluronan synthesis in rabbit pericardial mesothelial cells. Biochem J 1993; 292: 497-502.
  • 66 Monslow J. et al. The human hyaluronan synthase genes: genomic structures, proximal promoters and polymorphic microsatellite markers. Int J Biochem Cell Biol 2003; 35: 1272-1283.
  • 67 Monslow J. et al. Identification and analysis of the promoter region of the human hyaluronan synthase 2 gene. J Biol Chem 2004; 279: 20576-20581.
  • 68 Zhuo L, Kimata K. Cumulus oophorus extracellular matrix: its construction and regulation. Cell Struct Funct 2001; 26: 189-196.
  • 69 Buccione R. et al. FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor (s) secreted by the oocyte. Dev Biol 1990; 138: 16-25.
  • 70 Salustri A. et al. Hyaluronic acid synthesis by mural granulosa cells and cumulus cells in vitro is selectively stimulated by a factor produced by oocytes and by transforming growth factor-beta. J Biol Chem 1990; 265: 19517-19523.
  • 71 Ochsner SA. et al. Decreased expression of tumor necrosis factor-alpha-stimulated gene 6 incumulus cells of the cyclooxygenase-2 and EP2 null mice. Endocrinology 2003; 144: 1008-1019.
  • 72 Eppig JJ. Prostaglandin E2 stimulates cumulus expansion and hyaluronic acid synthesis by cumuli oophori isolated from mice. Biol Reprod 1981; 25: 191-195.
  • 73 Ye L. et al. Growth factor and cytokine-regulated hyaluronan-binding protein TSG-6 is localized to the injury-induced rat neointima and confers enhanced growth in vascular smooth muscle cells. Circ Res 1997; 81: 289-296.
  • 74 Meyer-Kirchrath J. et al. Gene expression profile of the Gs-coupled prostacyclin receptor in human vascularsmoot hmuscle cells. Biochem Pharmacol 2004; 67: 757-765.
  • 75 Sussmann M. et al. Induction of hyaluronic acid synthase 2 (HAS2) in human vascular smooth muscle cells by vasodilatory prostaglandins. Circ Res 2004; 94: 592-600.
  • 76 vanden Boom M. et al. Differential regulation of hyaluronic acid synthase isoforms in human saphenous vein smooth muscle cells: possible implications for vein graft stenosis. Circ Res 2006; 98: 36-44.
  • 77 Stuhlmeier KM. Prostaglandin E2: a potent activator of hyaluronan synthase 1 in type-B-synoviocytes. Biochim Biophys Acta 2007; 1770: 121-129.
  • 78 Papakonstantinou E. et al. Platelet-derived growth factor stimuates the secretion of hyaluronic acid by proliferating human vascular smooth muscle cells. Proc Natl Acad Sci USA 1995; 92: 9881-9885.
  • 79 Evanko SP. et al. Platelet-derived growth factor stimulates the formation of versican-hyaluronan aggregates and pericellular matrix expansion in arterial smooth muscle cells. Arch Biochem Biophys 2001; 394: 29-38.
  • 80 Merrilees MJ, Scott LJ. Endothelial cell stimulation of smooth muscle glycosaminoglycan synthesis can be accounted for by transforming growth factor beta activity. Atheroscler 1990; 81: 255-265.
  • 81 Evanko S. et al. Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics and the proximity of PDGF and TGF-β1. Am J Pathol 1998; 152: 533-546.
  • 82 Yokoyama U. et al. Chronic activation of the pros-taglandin receptor EP4 promotes hyaluronan-mediated neointimal formation in the ductus arteriosus. J Clin Invest 2006; 116: 3026-3034.
  • 83 Levesque H. et al. Localization and solubilization of hyaluronan and of the hyaluronan-binding protein hyaluronectin in human normal and arteriosclerotic arterial walls. Atherosclerosis 1994; 105: 51-62.
  • 84 Papakonstantinou E. et al. The differential distribution of hyaluronic acid in the layers of human athero-matic aortas is associated with vascular smooth muscle cell proliferation and migration. Atherosclerosis 1998; 138: 79-89.
  • 85 Kolodgie FD. et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol 2002; 22: 1642-1648.
  • 86 Ross R. Atherosclerosis is an inflammatory disease. Am Heart J 1999; 138: S419-420.
  • 87 Jackson CL, Schwartz SM. Pharmacology of smooth muscle cell replication. Hypertension 1992; 20: 713-736.
  • 88 Libby P. et al. A cascade model for restenosis. A special case of atherosclerosis progression. Circulation 1992; 86: III47-52.
  • 89 Jain M. et al. Role of CD44 in the reaction of vascular smooth muscle cells to arterial wall injury. J Clin Invest 1996; 98: 877.
  • 90 Chajara A. et al. Inhibition of arterial cells proliferation in vivo in injured arteries by hyaluronan fragments. Atherosclerosis 2003; 171: 15-19.
  • 91 Chai S. et al. Overexpression of hyaluronan in the tunica media promotes the development of atherosclerosis. Circ Res 2005; 96: 583-591.
  • 92 Travis JA. et al. Hyaluronan enhances contraction of collagen by smooth muscle cells and adventitial fibroblasts: Role of CD44 and implications for constrictive remodeling. Circ Res 2001; 88: 77-83.
  • 93 Wilkinson TS, Bressler SL, Evanko SP. et al. Over-expression of hyaluronan synthases alters vascular smooth muscle cell phenotype and promotes monocyte adhesion. J Cell Physiol 2006; 206: 378-385.
  • 94 Cuff CA. et al. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J Clin Invest 2001; 108: 1031-1040.
  • 95 Chajara A. et al. Hyaluronan and hyaluronectin production in injured rat thoracic aorta. Atherosclerosis 1996; 125: 193-207.
  • 96 Montesano R. et al. Synergistic effect of hyaluronan oligosaccharides and vascular endothelial growth factor on angiogenesis in vitro. Lab Invest 1996; 75: 249-262.
  • 97 Rooney P. et al. Angiogenic oligosaccharides of hyaluronan enhance the production of collagens by endothelial cells. J Cell Sci 1993; 105: 213-218.
  • 98 Feinberg RN, Beebe DC. Hyaluronate in vasculo-genesis. Science 1983; 220: 1177-1179.
  • 99 Papakonstantinou E. et al. A 340 kDa hyaluronic acid secreted by human vascular smoot hmuscle cells regulates their proliferation and migration. Glycobiol 1998; 8: 821-830.
  • 100 McKee CM. et al. Hyaluronan (HA)fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J Clin Invest 1996; 98: 2403-2413.
  • 101 De Grendele HC. et al. CD44 and its ligand hyaluronate mediate rolling under physiologic flow: a novel lymphocyte-endothelial cell primary adhesion pathway. J Exp Med 1996; 183: 1119-1130.
  • 102 De Grendele HC. et al. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 1997; 278: 672-675.
  • 103 Schrör K. Prostacyclin (Prostaglandin I2) and Atherosclerosis. New York: Marcel Dekker Inc.; 1997: 1-44.
  • 104 Trip MD. et al. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N Engl J Med 1990; 322: 1549-1554.
  • 105 Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002; 8: 1227-1234.
  • 106 Massberg S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196: 887-896.
  • 107 Massberg S. et al. Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischemia: an in vivo study in mice lacking glycoprotein IIb. Circulation 2005; 112: 1180-1188.
  • 108 Kobayashi T. et al. Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice. J Clin Invest 2004; 114: 784-794.
  • 109 Kyrle PA. et al. Thromboxane A2 and prostacyclin generation in the microvasculature of patients with atherosclerosis--effect of low-dose aspirin. Thromb Haemost 1989; 61: 374-377.
  • 110 Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. Br Med J 2002; 324: 71-86.
  • 111 Maree AO, Fitzgerald DJ. Aspirin and coronary artery disease. Thromb Haemost 2004; 92: 1175-1181.
  • 112 Belton O. et al. Cyclooxygenase-1 and -2-dependent prostacyclin formation in patients with atherosclerosis. Circulation 2000; 102: 840-845.
  • 113 Cheng Y. et al. Role of prostacyclin in the cardiovascular response to thromboxane A2. Science 2002; 296: 539-541.
  • 114 Burleigh ME, Babaev VR, Oates JA. et al. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation 2002; 105: 1816-1823.
  • 115 Cipollone F. et al. Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaques as a basis of pros-taglandin E(2)-dependent plaque instability. Circulation 2001; 104: 921-927.
  • 116 Hla T, Neilson K. Humancy clooxygenase-2 c DNA. Proc Natl Acad Sci USA 1992; 89: 7384-7388.
  • 117 Fu JY. et al. The induction and suppression of prostagland in H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem 1990; 265: 16737-16740.
  • 118 Bishop-Bailey D. et al. Differential induction of cyclooxygenase-2 inhuman arterial and venous smooth muscle: role of endogenous prostanoids. Arterioscler Thromb Vasc Biol 1998; 18: 1655-1661.
  • 119 Smith WL. Prostaglandin biosynthesis and its compartmentation in vascular smooth muscle and endothelial cells. Annu Rev Physiol 1986; 48: 251-262.
  • 120 Rimarachin JA. et al. Regulation of cyclooxygenase-2 expression in aortic smooth muscle cells. Arterioscler Thromb 1994; 14: 1021-1031.
  • 121 Soler M. et al. Human vascular smooth muscle cells but not endothelial cells express prostaglandin E synthase. Circ Res 2000; 87: 504-507.
  • 122 Matsumoto H. et al. Concordant induction of prostaglandin E2 synthase with cyclooxygenase-2 leads to preferred production of prostaglandin E2 over thromboxane and prostaglandin D2 in lipopolysaccharide-stimulated rat peritoneal macrophages. Biochem Biophys Res Commun 1997; 230: 110-114.
  • 123 Cannon CP. et al. Cardiovascular outcomes with etoricoxib and diclofenac in patients with osteo arthritis and rheumatoidarthritis in the Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) programme: a randomised comparison. Lancet 2006; 368: 1771-1781.
  • 124 Schrör K, Weber AA. COX-2 inhibitors and the thrombotic risk. Thromb Haemost 2006; 96: 391-392.
  • 125 Grosser T. et al. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest 2006; 116: 4-15.
  • 126 Belton OA. et al. Cyclooxygenase isoforms and platelet vessel wall interactions in the apolipoprotein E knockout mouse model of atherosclerosis. Circulation 2003; 108: 3017-3023.
  • 127 Bea F. et al. Chronic inhibition of cyclooxygenase-2 does not alter plaque composition in a mouse model of advanced unstable atherosclerosis. Cardiovasc Res 2003; 60: 198-204.
  • 128 Pratico D. et al. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice. Proc Natl Acad Sci USA 2001; 98: 3358-3363.
  • 129 Wang M. et al. Deletion of microsomal prostag-landin E synthase-1 augments prostacyclin and retards atherogenesis. Proc Natl Acad Sci USA 2006; 103: 14507-14512.
  • 130 Sun LK. et al. CD44-mediated cyclooxygenase-2 expression and thromboxane A2 production in RAW 264.7 macrophages. Inflamm Res 2001; 50: 496-499.
  • 131 Sun LK. et al. Hyaluronan-induced cyclooxygenase-2 expression promotes thromboxane A2 production by renal cells. Kidney Int 2001; 59: 190-196.
  • 132 Dunlop ME, Muggli EE. Hyaluronan increases glomerular cyclooxygenase-2 protein expression in a p38 MAP-kinase-dependent process. Kidney Int 2002; 61: 1729-1738.
  • 133 Fukata M. et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bac-terial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol 2005; 288: G1055-1065.
  • 134 Jimenez R. et al. Role of Toll-like receptors 2 and 4 in the induction of cyclooxygenase-2 in vascular smooth muscle. Proc Natl Acad Sci USA 2005; 102: 4637-4642.
  • 135 Pathak SK. et al. Toll-like receptor 2 and mitogenand stress-activated kinase 1 are effectors of Mycobacterium avium-induced cyclooxygenase-2 expression in macrophages. J Biol Chem 2004; 279: 55127-55136.
  • 136 Uematsu S. et al. Lipopolysaccharide-dependent prostaglandin E(2) production is regulated by the glutathione-dependent prostaglandin E(2) synthase gene induced by the Toll-like receptor 4/MyD88/NF-IL6 pathway. J Immunol 2002; 168: 5811-5816.