Thromb Haemost 2008; 99(03): 466-472
DOI: 10.1160/TH07-11-0673
Theme Issue Article
Schattauer GmbH

P2 receptors, platelet function and pharmacological implications

Christian Gachet
1   Institut National de la Santé et de la Recherche Médicale, U311, Strasbourg, France; Etablissement Français du Sang-Alsace, Strasbourg, France; Université Louis Pasteur, Strasbourg, France
› Author Affiliations
Further Information

Publication History

Received: 12 November 2007

Accepted after major revision: 10 January 2008

Publication Date:
07 December 2017 (online)

Summary

ADP and ATP play a crucial role in platelet activation and their receptors are potential targets for antithrombotic drugs. The ATP-gated cation channel P2X1 and the two G protein-coupled ADP receptors, P2Y1 and P2Y12, selectively contribute to platelet aggregation and formation of a thrombus.Owing to its central role in the growth and stabilization of a thrombus, the P2Y12 receptor is an established target of antithrombotic drugs like the thienopyridines clopidogrel or prasugrel, or competitive antag-onists such as cangrelor or AZD6140.The optimal inhibition of this receptor to reach clinical efficacy while preserving patients from unacceptable bleeding is a matter of debate. On the other hand, studies in P2Y1 and P2X1 knockout mice and using selective P2Y1 and P2X1 antagonists have shown that these receptors are also attractive targets for new antithrombotic compounds. Finally, the regulation by the P2 receptors of the platelet involvement in inflammatory processes is also briefly discussed.

 
  • References

  • 1 Burnstock G. Purinergic signaling and vascular cell proliferation and death. Arterioscler Thromb Vasc Biol 2002; 22: 364-373.
  • 2 Born GV. Adenosine diphosphate as a mediator of platelet aggregation in vivo: an editorial view. Circulation 1985; 72: 741-746.
  • 3 Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci 2007; 64: 1471-1483.
  • 4 Gordon JL. Extracellular ATP: effects, sources and fate. Biochem J 1986; 233: 309-319.
  • 5 Gachet C. The platelet P2 receptors as molecular targets for old and new antiplatelet drugs. Pharmacol Ther 2005; 108: 180-192.
  • 6 Gachet C. Regulation of platelet functions by P2 receptors. Annu Rev PharmacolToxicol 2006; 46: 277-300.
  • 7 Baurand A, Raboisson P, Freund M. et al. Inhibition of platelet function by administration of MRS2179, a P2Y1 receptor antagonist. Eur J Pharmacol 2001; 412: 213-221.
  • 8 Jin J, Daniel JL, Kunapuli SP. Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 1998; 273: 2030-2034.
  • 9 Hechler B, Eckly A, Ohlmann P. et al. The P2Y1 receptor, necessary but not sufficient to support full ADPinduced platelet aggregation, is not the target of the drug clopidogrel. Br J Haematol 1998; 103: 858-866.
  • 10 Savi P, Beauverger P, Labouret C. et al. Role of P2Y1 purinoceptor in ADP-induced platelet activation. FEBS Lett 1998; 422: 291-295.
  • 11 Hechler B, Léon C, Vial C. et al. The P2Y1 receptor is necessary for adenosine 5’-diphosphate-induced platelet aggregation. Blood 1998; 92: 152-159.
  • 12 Léon C, Hechler B, Freund M. et al. Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice. J Clin Invest 1999; 104: 1731-1737.
  • 13 Mangin P, Ohlmann P, Eckly A. et al. The P2Y receptor plays an essential role in the platelet shape change induced by collagen when TxA2 formation is prevented. J Thromb Haemost 2004; 2: 969-977.
  • 14 Hollopeter G, Jantzen HM, Vincent D. et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 2001; 409: 202-207.
  • 15 Cattaneo M. The P2 receptors and congenital platelet function defects. Semin Thromb Hemost 2005; 31: 168-173.
  • 16 Haynes SE, Hollopeter G, Yang G. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006; 9: 1512-1519.
  • 17 Wihlborg AK, Wang L, Braun OO. et al. ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arterioscler Thromb Vasc Biol 2004; 24: 1810-1815.
  • 18 Conley PB, Delaney SM. Scientific and therapeutic insights into the role of the platelet P2Y12 receptor in thrombosis. Curr Opin Hematol 2003; 10: 333-338.
  • 19 Cattaneo M, Lecchi A, Lombardi R. et al. Platelets from a patient heterozygous for the defect of P2CYC receptors for ADP have a secretion defect despite normal thromboxane A2 production and normal granule stores: further evidence that some cases of platelet ‘primary secretion defect’ are heterozygous for a defect of P2CYC receptors. Arterioscler Thromb Vasc Biol 2000; 20: E101-106.
  • 20 Foster CJ, Prosser DM, Agans JM. et al. Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 2001; 107: 1591-1598.
  • 21 Geiger J, Brich J, Honig-Liedl P. et al. Specific impairment of human platelet P2Y(AC) ADP receptormediated signaling by the antiplatelet drug clopidogrel. Arterioscler Thromb Vasc Biol 1999; 19: 2007-2011.
  • 22 Trumel C, Payrastre B, Plantavid M. et al. A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood 1999; 94: 4156-4165.
  • 23 Jackson SP, Schoenwaelder SM, Goncalves I. et al. PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat Med 2005; 11: 507-514.
  • 24 Lova P, Paganini S, Sinigaglia F. et al. A Gi-dependent pathway is required for activation of the small GTPase Rap1B in human platelets. J Biol Chem 2002; 277: 12009-12015.
  • 25 Woulfe D, Jiang H, Mortensen R. et al. Activation of Rap1B by G(i) family members in platelets. J Biol Chem 2002; 277: 23382-23390.
  • 26 Jin J, Kunapuli SP. Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci USA 1998; 95: 8070-8074.
  • 27 Hechler B, Zhang Y, Eckly A. et al. Lineage-specific overexpression of the P2Y1 receptor induces platelet hyper-reactivity in transgenic mice. J Thromb Haemost 2003; 1: 155-163.
  • 28 Lantz N, Hechler B, Ravanat C. et al. A high concentration of ADP induces weak platelet granule secretion independently of aggregation and thromboxane A2 production. Thromb Haemost 2007; 98: 1145-1147.
  • 29 Léon C, Ravanat C, Freund M. et al. Differential involvement of the P2Y1 and P2Y12 receptors in platelet procoagulant activity. Arterioscler Thromb Vasc Biol 2003; 23: 1941-1947.
  • 30 Léon C, Alex M, Klocke A. et al. Platelet ADP receptors contribute to the initiation of intravascular coagulation. Blood 2004; 103: 594-600.
  • 31 Storey RF, Sanderson HM, White AE. et al. The central role of the P(2T) receptor in amplification of human platelet activation, aggregation, secretion and procoagulant activity. Br J Haematol 2000; 110: 925-934.
  • 32 Léon C, Freund M, Ravanat C. et al. Key role of the P2Y(1) receptor in tissue factor-induced thrombin- dependent acute thromboembolism: studies in P2Y(1)- knockout mice and mice treated with a P2Y(1) antagonist. Circulation 2001; 103: 718-723.
  • 33 Mahaut-Smith MP, Tolhurst G, Evans RJ. Emerging roles for P2X1 receptors in platelet activation. Platelets 2004; 15: 131-144.
  • 34 Rolf MG, Brearley CA, Mahaut-Smith MP. Platelet shape change evoked by selective activation of P2X1 purinoceptors with alpha,beta-methylene ATP. Thromb Haemost 2001; 85: 303-308.
  • 35 Hechler B, Lenain N, Marchese P. et al. A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo. J Exp Med 2003; 198: 661-667.
  • 36 Cattaneo M, Marchese P, Jacobson KA. et al. New insights into the role of P2X1 in platelet function. Haematologica 2002; 87: 13-14.
  • 37 Oury C, Toth-Zsamboki E, Thys C. et al. The ATPgated P2X1 ion channel acts as a positive regulator of platelet responses to collagen. Thromb Haemost 2001; 86: 1264-1271.
  • 38 Baurand A, Eckly A, Bari N. et al. Desensitization of the platelet aggregation response to ADP: differential down-regulation of the P2Y1 and P2cyc receptors. Thromb Haemost 2000; 84: 484-491.
  • 39 Baurand A, Eckly A, Hechler B. et al. Differential regulation and relocalization of the platelet P2Y receptors after activation: A way to avoid loss of hemostatic properties?. Mol Pharmacol 2005; 67: 721-733.
  • 40 Hardy AR, Conley PB, Luo J. et al. P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase- dependent mechanisms. Blood 2005; 105: 3552-3560.
  • 41 Fontana P, Dupont A, Gandrille S. et al. Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation 2003; 108: 989-995.
  • 42 Fontana P, Gaussem P, Aiach M. et al. P2Y12 H2 haplotype is associated with peripheral arterial disease: a case-control study. Circulation 2003; 108: 2971-2973.
  • 43 Cavallari U, Trabetti E, Malerba G. et al. Gene sequence variations of the platelet P2Y12 receptor are associated with coronary artery disease. BMC Med Genet 2007; 8: 59.
  • 44 Hetherington SL, Singh RK, Lodwick D. et al. Dimorphism in the P2Y1 ADP receptor gene is associated with increased platelet activation response to ADP. Arterioscler Thromb Vasc Biol 2005; 25: 252-257.
  • 45 Bura A, Bachelot-Loza C, Ali FD. et al. Role of the P2Y12 gene polymorphism in platelet responsiveness to clopidogrel in healthy subjects. J Thromb Haemost 2006; 4: 2096-2097.
  • 46 Savi P, Herbert JM. Clopidogrel and Ticlopidine: P2Y12 Adenosine Diphosphate-Receptor Antagonists for the Prevention of Atherothrombosis. Semin Thromb Hemost 2005; 31: 174-183.
  • 47 Savi P, Pereillo JM, Uzabiaga MF. et al. Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost 2000; 84: 891-896.
  • 48 Savi P, Laplace MC, Herbert JM. Evidence for the existence of two different ADP-binding sites on rat platelets. Thromb Res 1994; 76: 157-169.
  • 49 Gachet C, Cattaneo M, Ohlmann P. et al. Purinoceptors on blood platelets: further pharmacological and clinical evidence to suggest the presence of two ADP receptors. Br J Haematol 1995; 91: 434-444.
  • 50 Mills DC, Puri R, Hu CJ. et al. Clopidogrel inhibits the binding of ADP analogues to the receptor mediating inhibition of platelet adenylate cyclase. Arterioscler Thromb 1992; 12: 430-436.
  • 51 Savi P, Zachayus JL, Delesque-Touchard N. et al. The active metabolite of Clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc Natl Acad Sci USA 2006; 103: 11069-11074.
  • 52 Dorsam RT, Murugappan S, Ding Z. et al. Clopidogrel: Interactions with the P2Y12 receptor and clinical relevance. Hematology 2003; 8: 359-365.
  • 53 Niitsu Y, Jakubowski JA, Sugidachi A. et al. Pharmacology of CS-747 (prasugrel, LY640315), a novel, potent antiplatelet agent with in vivo P2Y12 receptor antagonist activity. Semin Thromb Hemost 2005; 31: 184-194.
  • 54 Van Giezen JJ, Humphries RG. Preclinical and clinical studies with selective reversible direct P2Y12 antagonists. Semin Thromb Hemost 2005; 31: 195-204.
  • 55 Cattaneo M. Platelet P2 receptors: old and new targets for antithrombotic drugs. Expert Rev Cardiovasc Ther 2007; 5: 45-55.
  • 56 Serebruany VL, Steinhubl SR, Berger PB. et al. Variability in platelet responsiveness to clopidogrel among 544 individuals. J Am Coll Cardiol 2005; 45: 246-251.
  • 57 Gurbel PA, Bliden KP, Hiatt BL. et al. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation 2003; 107: 2908-2913.
  • 58 Jaremo P, Lindahl TL, Fransson SG. et al. Individual variations of platelet inhibition after loading doses of clopidogrel. J Intern Med 2002; 252: 233-238.
  • 59 Muller I, Besta F, Schulz C. et al. Prevalence of clopidogrel non-responders among patients with stable angina pectoris scheduled for elective coronary stent placement. Thromb Haemost 2003; 89: 783-787.
  • 60 Cattaneo M. Resistance to antiplatelet drugs: molecular mechanisms and laboratory detection. J Thromb Haemost 2007; 5 (Suppl. 01) 230-237.
  • 61 Siller-Matula J, Schror K, Wojta J. et al. Thienopyridines in cardiovascular disease: focus on clopidogrel resistance. Thromb Haemost 2007; 97: 385-393.
  • 62 Aleil B, Ravanat C, Cazenave JP. et al. Flow cytometric analysis of intraplatelet VASP phosphorylation for the detection of clopidogrel resistance in patients with ischemic cardiovascular diseases. J Thromb Haemost 2005; 3: 85-92.
  • 63 Geiger J, Teichmann L, Grossmann R. et al. Monitoring of clopidogrel action: Comparison of methods. Clin Chem 2005; 0: 200404705.
  • 64 Snoep JD, Hovens MM, Eikenboom JC. et al. Clopidogrel nonresponsiveness in patients undergoing percutaneous coronary intervention with stenting: a systematic review and meta-analysis. Am Heart J 2007; 154: 221-231.
  • 65 Lotrionte M, Biondi-Zoccai GG, Agostoni P. et al. Meta-analysis appraising high clopidogrel loading in patients undergoing percutaneous coronary intervention. Am J Cardiol 2007; 100: 1199-1206.
  • 66 Lau WC, Gurbel PA, Watkins PB. et al. Contribution of hepatic cytochrome P450 3A4 metabolic activity to the phenomenon of clopidogrel resistance. Circulation 2004; 109: 166-171.
  • 67 Lau WC, Waskell LA, Watkins PB. et al. Atorvastatin reduces the ability of clopidogrel to inhibit platelet aggregation: a new drug-drug interaction. Circulation 2003; 107: 32-37.
  • 68 Jefferson BK, Foster JH, McCarthy JJ. et al. Aspirin resistance and a single gene. Am J Cardiol 2005; 95: 805-808.
  • 69 Gachet C, Aleil B. The inter-individual variability of the response to clopidogrel. Arch Mal Coeur Vaiss 2005; 98: 216-225.
  • 70 Nguyen TA, Diodati JG, Pharand C. Resistance to clopidogrel: a review of the evidence. J Am Coll Cardiol 2005; 45: 1157-1164.
  • 71 Fontana P, Senouf D, Mach F. Biological effect of increased maintenance dose of clopidogrel in cardiovascular outpatients and influence of the cytochrome P450 2C19()2 allele on clopidogrel responsiveness. Thromb Res. 2007 epub ahead of print.
  • 72 Hulot JS, Bura A, Villard E. et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major deter-minant of clopidogrel responsiveness in healthy subjects. Blood 2006; 108: 2244-2247.
  • 73 Brandt JT, Payne CD, Wiviott SD. et al. A comparison of prasugrel and clopidogrel loading doses on platelet function: magnitude of platelet inhibition is related to active metabolite formation. Am Heart J 2007; 153: 66.e69-16.
  • 74 Sugidachi A, Ogawa T, Kurihara A. et al. The greater in vivo antiplatelet effects of prasugrel as compared to clopidogrel reflect more efficient generation of its active metabolite with similar antiplatelet activity to that of clopidogrel’s active metabolite. J Thromb Haemost 2007; 5: 1545-1551.
  • 75 Brandt JT, Close SL, Iturria SJ. et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost 2007; 5: 2429-2436.
  • 76 Farid NA, Payne CD, Small DS. et al. Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently. Clin Pharmacol Ther 2007; 81: 735-741.
  • 77 Wiviott SD, Braunwald E, McCabe CH. et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007; 357: 2001-2015.
  • 78 Bhatt DL. Intensifying platelet inhibition – Navigating between Scylla and Charybdis. N Engl J Med 2007; 357: 2078-2081.
  • 79 Wiviott SD, Trenk D, Frelinger AL. et al. Prasugrel compared with high loading- and maintenance-dose clopidogrel in patients with planned percutaneous coronary intervention: the Prasugrel in Comparison to Clopidogrel for Inhibition of Platelet Activation and Aggregation-Thrombolysis in Myocardial Infarction 44 trial. Circulation 2007; 116: 2923-2932.
  • 80 Angiolillo DJ. ADP receptor antagonism: What’s in the pipeline?. Am J Cardiovasc Drugs 2007; 7: 423-432.
  • 81 Angiolillo DJ, Alfonso F. Platelet function testing and cardiovascular outcomes: steps forward in identifying the best predictive measure. Thromb Haemost 2007; 98: 707-709.
  • 82 Gachet C, Aleil B. Testing antiplatelet therapy. Eur Heart J 2008; 10: A28-A34.
  • 83 Storey RF, Oldroyd KG, Wilcox RG. Open multicentre study of the P2T receptor antagonist ARC69931MX assessing safety, tolerability and activity in patients with acute coronary syndromes. Thromb Haemost 2001; 85: 401-407.
  • 84 Storey RF, Wilcox RG, Heptinstall S. Comparison of the pharmacodynamic effects of the platelet ADP receptor antagonists clopidogrel and AR-C69931MX in patients with ischaemic heart disease. Platelets 2002; 13: 407-413.
  • 85 Jacobsson F, Swahn E, Wallentin L. et al. Safety profile and tolerability of intravenous AR-C69931MX, a new antiplatelet drug, in unstable angina pectoris and non-Q-wave myocardial infarction. Clin Ther 2002; 24: 752-765.
  • 86 Husted S, Emanuelsson H, Heptinstall S. et al. Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. Eur Heart J 2006; 27: 1038-1047.
  • 87 Steinhubl S, Roe MT. Optimizing platelet P2Y12 inhibition for patients undergoing PCI. Cardiovasc Drug Rev 2007; 25: 188-203.
  • 88 Storey RF. Variability of response to antiplatelet therapy. Eur Heart J. 2008 in print.
  • 89 Fabre JE, Nguyen M, Latour A. et al. Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med 1999; 5: 1199-1202.
  • 90 Lenain N, Freund M, Léon C. et al. Inhibition of localized thrombosis in P2Y1-deficient mice and rodents treated with MRS2179, a P2Y1 receptor antagonist. J Thromb Haemost 2003; 1: 1144-1149.
  • 91 Hechler B, Nonne C, Roh EJ. et al. MRS2500 [2-iodo-N6-methyl-(N)-methanocarba-2’-deoxyadeno sine-3’,5’-bisphosphate], a potent, selective, and stable antagonist of the platelet P2Y1 receptor with strong antithrombotic activity in mice. J Pharmacol Exp Ther 2006; 316: 556-563.
  • 92 Oury C, Kuijpers MJ, Toth-Zsamboki E. et al. Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood 2003; 101: 3969-3976.
  • 93 Kassack MU, Braun K, Ganso M. et al. Structureactivity relationships of analogues of NF449 confirm NF449 as the most potent and selective known P2X1 receptor antagonist. Eur J Med Chem 2004; 39: 345-357.
  • 94 Hechler B, Magnenat S, Zighetti ML. et al. Inhibition of platelet functions and thrombosis through selective or nonselective inhibition of the platelet P2 receptors with increasing doses of NF449. J Pharmacol Exp Ther 2005; 314: 232-243.
  • 95 Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med 1999; 340: 115-126.
  • 96 Libby P. Inflammation in atherosclerosis. Nature 2002; 420: 868-874.
  • 97 Bhatt DL, Topol EJ. Scientific and therapeutic advances in antiplatelet therapy. Nat Rev Drug Discov 2003; 2: 15-28.
  • 98 Di Virgilio F, Solini A. P2 receptors: new potential players in atherosclerosis. Br J Pharmacol 2002; 135: 831-842.
  • 99 Hermann A, Rauch BH, Braun M. et al. Platelet CD40 ligand (CD40L)–subcellular localization, regulation of expression, and inhibition by clopidogrel. Platelets 2001; 12: 74-82.
  • 100 Steinhubl SR, Badimon JJ, Bhatt DL. et al. Clinical evidence for anti-inflammatory effects of antiplatelet therapy in patients with atherothrombotic disease. Vasc Med 2007; 12: 113-122.
  • 101 Li M, Zhang Y, Ren H. et al. Effect of clopidogrel on the inflammatory progression of early atherosclerosis in rabbits model. Atherosclerosis 2007; 194: 348-356.
  • 102 Hechler B, Freund M, Ravanat C. et al. Reduced atherosclerotic lesions in P2Y1/ApoE double knockout mice. Circulation. 2007 in revision.
  • 103 Carmeliet P. Angiogenesis in health and disease. Nat Med 2003; 9: 653-660.
  • 104 De La Cruz P, Arrebola M, Gonzalez-Correa A. et al. Effects of clopidogrel and ticlopidine on experimental diabetic ischemic retinopathy in rats. Naunyn Schmiedebergs Arch Pharmacol 2003; 367: 204-210.
  • 105 Goepfert C, Sundberg C, Sevigny J. et al. Disordered cellular migration and angiogenesis in cd39-null mice. Circulation 2001; 104: 3109-3115.