Thromb Haemost 2009; 102(06): 1064-1070
DOI: 10.1160/TH09-06-0348
Theme Issue Article
Schattauer GmbH

Chlamydia pneumoniae adversely modulates vascular cell properties by direct interaction with signalling cascades

Jan Marco Kern
1   Institute of Medical Microbiology, Hygiene and Infectious Diseases, University Hospital Salzburg, Paracelsus Medical Private University, Salzburg, Austria
,
Viola Maass
1   Institute of Medical Microbiology, Hygiene and Infectious Diseases, University Hospital Salzburg, Paracelsus Medical Private University, Salzburg, Austria
,
Matthias Maass
1   Institute of Medical Microbiology, Hygiene and Infectious Diseases, University Hospital Salzburg, Paracelsus Medical Private University, Salzburg, Austria
› Author Affiliations
Further Information

Publication History

Received: 04 June 2009

Accepted after major revision: 05 November 2009

Publication Date:
28 November 2017 (online)

Summary

Due to its dependence on intracellular development Chlamydia pneumoniae has developed numerous strategies to create an adequate environment within its host cells ensuring both chlamydial reproduction and target cell survival. The bacterium that has been related to atherogenesis due to its presence in vascular tissue is able to enter a persistent state of chronic infection in the vasculature that escapes antibiotic targeting. Ingestion of the bacterium results in severe modifications and reprogramming of signalling pathways and the metabolism of the host cell. Processes range from the prevention of direct lysosomal destruction of chlamydial inclusions to the inhibition of host cell apoptosis and an enhanced cellular glucose uptake to maintain energy-consuming mechanisms. Furthermore, infection regularly causes the development of a proinflammatory and proproliferative phenotype in the host cell in vitro, ex vivo and in vivo and own new findings suggest a detrimental proliferative loop within vascular cells upon a modified endothelin-1 axis demonstrating a potential for proatherosclerotic processes in early and progressed atherosclerosis. This review displays crucial mechanisms of Chlamydia pneumoniae-induced interactions with vascular host cell signalling cascades with an emphasis on mitogenic and inflammatory processes as well as target cell activation.

 
  • References

  • 1 Grayston JT. Background and current knowledge of Chlamydia pneumoniae and atherosclerosis. J Infect Dis 2000; 181: 402-410.
  • 2 Huang J, Lesser CF, Lory S. The essential role of CopN protein in Chlamydia pneumoniae intracellular growth. Nature 2008; 456: 112-115.
  • 3 Heuer D, Lipinski AR, Machuy N. et al. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 2009; 457: 731-735.
  • 4 Fischer SF, Vier J, Kirschnek S. et al. Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins. J Exp Med 2004; 200: 905-916.
  • 5 van Zandbergen G, Gieffers J, Kothe H. et al. Chlamydia pneumoniae multiply in neutrophil granulocytes and delay their spontaneous apoptosis. J Immunol 2004; 172: 1768-1776.
  • 6 Krüll M, Maass M, Suttorp N. et al. Chlamydophila pneumoniae. Mechanisms of target cell infection and activation. Thromb Haemost 2005; 94: 319-326.
  • 7 Kern JM, Maass V, Rupp J. et al. Proliferative stimulation of the vascular Endothelin-1 axis in vitro and ex vivo by infection with Chlamydia pneumoniae . Thromb Haemost 2009; 102: 743-753.
  • 8 Rupp J, Gieffers J, Klinger M. et al. Chlamydia pneumoniae directly interferes with HIF-1α stabilization in human host cells. Cell Microbiol 2007; 09: 2181-2191.
  • 9 Saikku P, Leinonen M, Mattila K. et al. Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 1998; 02: 983-986.
  • 10 Thom DH, Grayston JT, Siscovick DS. et al. Association of prior infection with Chlamydia pneumoniae and angiographically demonstrated coronary artery disease. J Am Med Assoc 1992; 268: 68-72.
  • 11 Linnanmäki E, Leinonen M, Mattila K. et al. Chlamydia pneumoniae-specific circulating immune complexes in patients with chronic coronary heart disease. Circulation 1993; 87: 1130-1134.
  • 12 Campbell LA, Kuo CC. 2004; Chlamydia pneumoniae — an infectious risk factor for atherosclerosis?. Nat Rev Microbiol 02: 23-32.
  • 13 Shor A, Kuo CC, Patton DL. Detection of Chlamydia pneumoniae in the coronary artery atheroma plaque. South Afric Med J 1992; 82: 158-161.
  • 14 Kuo CC, Shor A, Campbell LA. et al. Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. J Infect Dis 1993; 167: 841-849.
  • 15 Maass M, Bartels C, Engel PM. et al. Endovascular presence of viable Chlamydia pneumoniae is a common phenomenon in coronary artery disease. J Am Coll Cardiol 1998; 187: 103-106.
  • 16 Gieffers J, van Zandbergen G, Rupp J. et al. Phagocytes transmit Chlamydia pneumoniae from the lungs to the vasculature. Eur Respir J 2004; 23: 506-510.
  • 17 Gieffers J, Rupp J, Gebert A. et al. First-choice antibiotics at subinhibitory concentrations induce persistence of Chlamydia pneumoniae . Antimicrob Agents Chemother 2004; 48: 1402-1405.
  • 18 Rupp J, Hellwig-Bürgel T, Wobbe V. et al. Chlamydia pneumoniae infection promotes a proliferative phenotype in the vasculature through Egr-1 activation in vitro and in vivo. Proc Natl Acad Sci USA 2005; 102: 3447-3452.
  • 19 Rupp J, Koch M, van Zandvergen G. et al. Transmission of Chlamydia pneumoniae infection from blood monocytes to vascular cells in a novel transendothelial migration model. FEMS Microbiol Lett 2005; 242: 203-208.
  • 20 Mathews S, George C, Flegg C. et al. Differential expression of ompA, ompB, pyk, nlpD and Cpn0585 genes between normal and interferon-gamma-treated cultures of Chlamydia pneumoniae . Microb Pathog 2001; 30: 337-345.
  • 21 Kutlin A, Flegg C, Stenzel D. et al. Ultrastructural study of Chlamydia pneumoniae in a continuous-infection model. J Clin Microbiol 2001; 39: 3721-3723.
  • 22 Molestina RE, Klein JB, Miller RD. et al. Proteomic analysis of differentially expressed Chlamydia pneumoniae genes during persistent infection of HEp-2 cells. Infect Immun 2002; 70: 2976-2981.
  • 23 Peters J, Wilson DP, Myers G. et al. Type III secretion à la Chlamydia . Trends Microbiol 2007; 15: 241-251.
  • 24 Gieffers J, Füllgraf H, Jahn J. et al. Chlamydia pneumoniae infection in circulating human monocytes is refractory to antibiotic treatment. Circulation 2001; 103: 351-356.
  • 25 Blessing E, Campbell LA, Rosenfeld ME. et al. A 6 week course of azithromycin treatment has no beneficial effect on atherosclerotic lesion development in apolipoprotein E-deficient mice chronically infected with Chlamydia pneumoniae . J Antimicrob Chemother 2005; 55: 1037-1040.
  • 26 Dechend R, Gieffers J, Dietz R. et al. Hydroxymethylglutaryl coenzyme A reductase inhibition reduces Chlamydia pneumoniae-induced cell interaction and activation. Circulation 2003; 108: 261-265.
  • 27 Muhlestein JB. Chlamydia pneumoniae-induced atherosclerosis in a rabbit model. J Infect Dis 2000; 181: 505-507.
  • 28 O’Connor CM, Dunne MW, Pfeffer MA. et al. Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. J Am Med Assoc 2003; 290: 1459-1466.
  • 29 Anderson JL, Muhlestein JB. Antibiotic trials for coronary artery disease. Tex Heart Inst J 2004; 31: 33-38.
  • 30 Grayston JT, Kronmal RA, Jackson LA. et al. Azithromycin for the secondary prevention of coronary events. N Engl J Med 2005; 352: 1637-1645.
  • 31 Khachigian LM, Lindner V, Williams AJ. et al. Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science 1996; 271: 1427-1431.
  • 32 Bavendiek U, Libby P, Kilbride M. et al. Induction of tissue factor expression in human endothelial cells by CD40 ligand is mediated via activator protein 1, nuclear factor kappa B, and Egr-1. J Biol Chem 2002; 277: 25032-25039.
  • 33 Böhm F, Beltran E, Pernow J. Endothelin receptor blockade improves endothelial function in atherosclerotic patients on angiotensin converting enzyme inhibition. J Int Med 2005; 257: 263-271.
  • 34 Sasu S, LaVerda D, Qureshi N. et al. Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p42/44 mitogene-activated protein kinase activation. Circ Res 2001; 89: 244-250.
  • 35 Kalayoglu MV, Hoerneman B, LaVerda D. et al. Cellular oxidation of low-density lipoprotein by Chlamydia pneumoniae . J Infect Dis 1999; 180: 780-790.
  • 36 Kol A, Sukhova GK, Lichtman AH. et al. Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor alpha and matrix metalloproteinase expression. Circulation 1998; 98: 300-307.
  • 37 Hirono S, Dibrov E, Hurtado C. et al. Chlamydia pneumoniae stimulates proliferation of vascular smooth muscle cells through induction of endogenous heat shock protein 60. Circ Res 2003; 93: 710-728.
  • 38 de Graaf R, Kloppenburg G, Kitslaar PJ. et al. Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through Toll-like receptors 2 and 4. Microbes Infect 2006; 08: 1859-1865.
  • 39 Pockley AG. Heat shock proteins, inflammation, and cardiovascular disease. Circulation 2002; 105: 1012-1017.
  • 40 Xiao Q, Mandal K, Schett G. et al. Association of serum-soluble heat shock protein 60 with carotid atherosclerosis. Stroke 2005; 36: 2571-2576.
  • 41 Coombes BK, Mahony JB. Chlamydia pneumoniae infection of human endothelial cells induces proliferation of smooth muscle cells via endothelial cell-derived soluble factor(s). Infect Immun 1999; 67: 2909-2915.
  • 42 Coombes BK, Chiu B, Fong IW. et al. Chlamydia pneumoniae infection of endothelial cells induces transcriptional activation of platelet-derived growth factor-B: A potential link to intimal thickening in a rabbit model of atherosclerosis. J Infect Dis 2002; 185: 1621-1630.
  • 43 Krüll M, Petrov TKramp. et al. Differences in cell activation by Chlamydia pneumoniae and Chlamydia trachomatis infection in human endothelial cells. Infect Immun 2004; 72: 6615-6621.
  • 44 Krüll M, Klucken AC, Wuppermann FN. et al. Signal transduction pathways activated in endothelial cells following infection with Chlamydia pneumoniae . J Immunol 1999; 162: 4834-4841.
  • 45 Wolf K, Plano GV, Fields KA. A protein secreted by the respiratory pathogen Chlamydia pneumoniae impairs IL-17 signalling via interaction with human Act1. Cell Microbiol 2009; 11: 769-779.
  • 46 Schmeck B, Beermann W, N’Guessan PD. et al. Simvastatin reduces Chlamydia pneumoniae-mediated histone modifications and gene expression in cultured human epithelial cells. Circ Res 2008; 102: 888-895.
  • 47 Opitz B, Förster S, Hocke AC. et al. Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae . Circ Res 2005; 96: 319-326.
  • 48 Shimada K, Chen S, Dempsey PW. et al. The NOD/ RIP2 pathway is essential for host defense against Chlamydia pneumoniae lung infection. PloS Pathog. 2009 05. in press.
  • 49 Prebeck S, Kirschning C, Dürr S. et al. Predominant role of toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J Immunol 2001; 167: 3316-3323.
  • 50 Netea MG, Kullberg BJ, Galama JM. et al. Non-LPS components of Chlamydia pneumoniae stimulate cytokine production through Toll-like receptor 2-dependent pathways. Eur J Immunol 2002; 32: 1188-1195.
  • 51 Cao F, Castrillo A, Tontonoz P. et al. Chlamydia pneumoniae-induced macrophage foam cell formation is mediated by toll-like receptor 2. Infect Immun 2007; 75: 753-759.
  • 52 Haralambieva IH, Iankov ID, Ivanova PV. et al. Chlamydophila pneumoniae induces p44/p42 mitogen-activated protein kinase activation in human fibroblasts through Toll-like receptor 4. J Med Microbiol 2004; 53: 1187-1193.
  • 53 Netea MG, Kullberg BJ, Jacobs LE. et al. Chlamydia pneumoniae stimulates IFN-gamma synthesis through MyD88-dependent, TLR2- and TLR4-independent induction of IL-18 release. J Immunol 2004; 173: 1477-1488.
  • 54 Fryer RH, Schwobe EP, Woods ML. et al. Chlamydia species infect human vascular endothelial cells and induce procoagulant activity. J Invest Med 1997; 45: 168-174.
  • 55 Dechend R, Maass M, Gieffers J. et al. Chlamydia pneumoniae infection of vascular smooth muscle and endothelial cells activates NF-?B and induces tissue factor and PAI-1 expression: a potential link to accelerated atherosclerosis. Circulation 1999; 100: 1369-1373.
  • 56 Netea MG, Selzmann CH, Kullberg BJ. Acellular components of Chlamydia pneumoniae stimulate cytokine production in human blood mononuclear cells. Eur J Immunol 2000; 30: 541-549.
  • 57 Gaydos CA. Growth in vascular cells and cytokine production by Chlamydia pneumoniae . J Infect Dis 2000; 181: 473-478.
  • 58 Rupp J, Berger M, Reiling N. et al. Cox-2 inhibition abrogates Chlamydia pneumoniae-induced PGE2 and MMP-1 expression. Biochem Biophys Res Commun 2004; 320: 738-744.
  • 59 Schmidt R, Redecke V, Breitfeld Y. et al. EMMPRIN (CD 147) is a central activator of extracellular matrix degradation by Chlamydia pneumoniae-infected monocytes. Implications for plaque rupture. Thromb Haemost 2006; 95: 151-158.
  • 60 Oksaharju A, Lappalainen J, Tuomainen AM. et al. Proatherogenic lung and oral pathogens induce an inflammatory response in human and mouse mast cells. J Cell Mol Med 2009; 13: 103-113.
  • 61 Yang J, Hooper WC, Phillips DJ. et al. Induction of proinflammatory cytokines in human lung epithelial cells during Chlamydia pneumoniae infection. Infect Immun 2003; 71: 614-620.
  • 62 Ikejima H, Freidman H, Yamamoto Y. Chlamydia pneumoniae infection of microglial cells in vitro: a model of microbial infection for neuroglial disease. J Med Microbiol 2006; 55: 947-952.