Thromb Haemost 2010; 104(05): 1022-1028
DOI: 10.1160/TH10-04-0241
Wound Healing and Inflammation/Infection
Schattauer GmbH

Argatroban administration reduces leukocyte adhesion and improves capillary perfusion within the intestinal microcirculation in experimental sepsis

Christian Fuchs
1   Department of Anesthesia and Intensive Care Medicine, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
,
Elena Ladwig
1   Department of Anesthesia and Intensive Care Medicine, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
,
Juan Zhou
2   Department of Anesthesia, Dalhousie University, Halifax, Nova Scotia, Canada
,
Dragan Pavlovic
1   Department of Anesthesia and Intensive Care Medicine, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
,
Kristina Behrend
1   Department of Anesthesia and Intensive Care Medicine, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
,
Sara Whynot
2   Department of Anesthesia, Dalhousie University, Halifax, Nova Scotia, Canada
,
Orlando Hung
2   Department of Anesthesia, Dalhousie University, Halifax, Nova Scotia, Canada
,
Michael Murphy
2   Department of Anesthesia, Dalhousie University, Halifax, Nova Scotia, Canada
,
Vladimir Cerny
3   Department of Anesthesiology and Intensive Care Medicine, University Hospital Hradec Kralove, Charles University in Prague, Czech Republic
,
Christian Lehmann
1   Department of Anesthesia and Intensive Care Medicine, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
2   Department of Anesthesia, Dalhousie University, Halifax, Nova Scotia, Canada
› Author Affiliations
Financial support: The study was supported by an unrestricted grant from Mitsubishi Pharma Deutsch-land GmbH.
Further Information

Publication History

Received: 20 April 2010

Accepted after major revision: 19 July 2010

Publication Date:
24 November 2017 (online)

Summary

Co-activation of pro-coagulatory pathways in sepsis may result in disseminated intravascular coagulation and contributes to microvascular dysfunction. We investigated the effects of the direct thrombin inhibitor, argatroban (ARG), on the sepsis-induced impairment of the intestinal microcirculation (capillary perfusion, leukocyte adhesion) and the vascular contractility in rats. Forty male Lewis rats were randomly assigned to one of four groups: sham surgery (SHAM), experimental sepsis (colon ascendens stent peritonitis – CASP), CASP+ARG, and SHAM+ARG. At 16 hours after colon stent insertion (or sham surgery), 2 mg/kg argatroban or buffer were given intravenously, and 1 hour thereafter, intravital microscopy was performed. In addition, experiments to study the impact of ARG on vascular contractility were conducted in vitro. ARG administration in CASP rats significantly increased functional capillary density in mucosal (+128%) and muscular layers (longitudinal: +42%; circular: +64%) and decreased the number of firmly adhering leukocytes in the intestinal submucosa compared to untreated animals. In vitro findings indicated a vasodilating effect of ARG. ARG administration during experimental sepsis improved intestinal microcirculation by preserving functional capillary density, an indicator of microvascular perfusion, and by reducing leukocyte adherence to the endothelium in submucosal venules.

 
  • References

  • 1 Brun-Buisson C. The epidemiology of the systemic inflammatory response. Intensive Care Med 2000; 26 (Suppl. 01) S64-74.
  • 2 Toltl LJ, Swystun LL, Pepler L. et al. Protective effects of activated protein C in sepsis. Thromb Haemost 2008; 100: 582-592.
  • 3 Claessens YE, Dhainaut JF. Diagnosis and treatment of severe sepsis. Crit Care 2007; 11 (Suppl. 05) S2.
  • 4 Dellinger RP, Levy MM, Carlet JM. et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med 2008; 34: 17-60.
  • 5 Tsen A, Kirschenbaum LA, LaRow C. et al. The effect of anticoagulants and the role of thrombin on neutrophil-endothelial cell interactions in septic shock. Shock 2009; 31: 120-124.
  • 6 Pulletz S, Lehmann C, Volk T. et al. Influence of heparin and hirudin on endothelial binding of antithrombin in experimental thrombinemia. Crit Care Med 2000; 28: 2881-2886.
  • 7 Hoffmann JN, Vollmar B, Laschke MW. et al. Microhemodynamic and cellular mechanisms of activated protein C action during endotoxemia. Crit Care Med 2004; 32: 1011-1017.
  • 8 Fenton 2nd JW, Ofosu FA, Brezniak DV. et al. Thrombin and antithrombotics. Semin Thromb Hemost 1998; 24: 87-91.
  • 9 Esmon CT. Interactions between the innate immune and blood coagulation systems. Trends Immunol 2004; 25: 536-542.
  • 10 Esmon CT. Role of coagulation inhibitors in inflammation. Thromb Haemost 2001; 86: 51-56.
  • 11 Levi M, de Jonge E, van der Poll T. Sepsis and disseminated intravascular coagulation. J Thromb Thrombolysis 2003; 16: 43-47.
  • 12 Dempfle CE. Coagulopathy of sepsis. Thromb Haemost 2004; 91: 213-224.
  • 13 Lustig MK, Bac VH, Pavlovic D. et al. Colon ascendens stent peritonitis--a model of sepsis adopted to the rat: physiological, microcirculatory and laboratory changes. Shock 2007; 28: 59-64.
  • 14 Lehmann C, Bac VH, Pavlovic D. et al. Metronidazole improves intestinal micro-circulation in septic rats independently of bacterial burden. Clin Hemorheol Microcirc 2006; 34: 427-438.
  • 15 Miyahara S, Kiryu J, Tsujikawa A. et al. Argatroban attenuates leukocyte- and platelet-endothelial cell interactions after transient retinal ischemia. Stroke 2003; 34: 2043-2049.
  • 16 Pavlovic D, Frieling H, Lauer KS. et al. Thermostatic tissue platform for intravital microscopy: ‘the hanging drop’ model. J Microsc 2006; 224: 203-210.
  • 17 Bohlen HG, Gore RW. Preparation of rat intestinal muscle and mucosa for quantitative microcirculatory studies. Microvasc Res 1976; 11: 103-110.
  • 18 Metry JM, Neff M, Knoblauch M. The microcirculatory system of the intestinal mucosa of the rat. An injection cast and scanning electron microscopy study. Scand J Gastroenterol Suppl 1982; 71: 159-162.
  • 19 Schmid-Schoenbein GW, Zweifach BW, Kovalcheck S. The application of stereo-logical principles to morphometry of the microcirculation in different tissues. Microvasc Res 1977; 14: 303-317.
  • 20 Frieling H, Grundling M, Lauer KS. et al. Intraperitoneal instillation of polihexanide produces hypotension and vasodilation: in vivo and in vitro study in rats. Int J Colorectal Dis 2006; 21: 373-380.
  • 21 Spronk PE, Zandstra DF, Ince C. Bench-to-bedside review: sepsis is a disease of the microcirculation. Crit Care 2004; 08: 462-468.
  • 22 Kirschenbaum LA, Adler D, Astiz ME. et al. Mechanisms of platelet-neutrophil interactions and effects on cell filtration in septic shock. Shock 2002; 17: 508-512.
  • 23 Opal SM, Esmon CT. Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care 2003; 07: 23-38.
  • 24 Warkentin TE, Greinacher A, Craven S. et al. Differences in the clinically effective molar concentrations of four direct thrombin inhibitors explain their variable prothrombin time prolongation. Thromb Haemost 2005; 94: 958-964.