Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00035024.xml
Thromb Haemost 2011; 105(06): 1100-1102
DOI: 10.1160/TH11-01-0018
DOI: 10.1160/TH11-01-0018
Letters to the Editor
Effects of CYP4F2 and GGCX genetic variants on maintenance warfarin dose in a multiethnic Asian population
Financial support:This study was supported by grants from the Singapore Cancer Syndicate (SCS-PN22R) and the National Medical Research Council, Singapore (NMRC/CSA/015/2009).Further Information
Publication History
Received:
16 January 2011
Accepted after minor revision:
04 February 2011
Publication Date:
28 November 2017 (online)
-
References
- 1 Hirsh J, Fuster V, Ansell J. et al. American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. Circulation 2003; 107: 1692-1711.
- 2 Zhao F, Loke C, Rankin SC. et al. Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose. Clin Pharmacol Ther 2004; 76: 210-219.
- 3 Lee SC, Ng SS, Oldenburg J. et al. Interethnic variability of warfarin maintenance requirement is explained by VKORC1 genotype in an Asian population. Clin Pharmacol Ther 2006; 79: 197-205.
- 4 Caldwell M, Awad T, Johnson J. et al. CYP4F2 genetic variant alters required warfarin dose. Blood 2008; 111: 4106-4112.
- 5 Borgiani P, Ciccacci C, Forte V. et al. CYP4F2 genetic variant (rs2108622) significantly contributes to warfarin dosing variability in the Italian population. Pharmacogenomics 2009; 10: 261-266.
- 6 Takeuchi F, McGinnis R, Bourgeois S. et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 2009; 5: e1000433.
- 7 Pautas E, Moreau C, Gouin-Thibault I. et al. Genetic Factors (VKORC1, CYP2C9, EPHX1, and CYP4F2) Are Predictor Variables for Warfarin Response in Very Elderly, Frail Inpatients. Clin Pharmacol Ther 2010; 87: 57-64.
- 8 Cen HJ, Zeng WT, Leng XY. et al. CYP4F2 rs2108622: a minor significant genetic factor of warfarin dose in Han Chinese patients with mechanical heart valve replacement. Br J Clin Pharmacol 2010; 70: 234-240.
- 9 Singh O, Sandanaraj E, Subramanian K. et al. The influence of CYP4F2 rs2108622 (V433M) on warfarin dose requirement in Asian patients. Drug Metab Pharmacokinet. 2010 epub ahead of print.
- 10 Perini J, Struchiner C, Silva-Assunção E. et al. Impact of CYP4F2 rs2108622 on the stable warfarin dose in an admixed patient cohort. Clin Pharmacol Ther 2010; 87: 417-420.
- 11 Zhang JE, Jorgensen AL, Alfirevic A. et al. Effects of CYP4F2 genetic polymorphisms and haplotypes on clinical outcomes in patients initiated on warfarin therapy. Pharmacogenet Genomics 2009; 19: 781-789.
- 12 Lee M, Chen C, Chou C. et al. Genetic determinants of warfarin dosing in the Han-Chinese population. Pharmacogenomics 2009; 10: 1905-1913.
- 13 Cavallari LH, Langaee TY, Momary KM. et al. Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin Pharmacol Ther 2010; 87: 459-464.
- 14 Carlquist JF, Horne BD, Mower C. et al. An evaluation of nine genetic variants related to metabolism and mechanism of action of warfarin as applied to stable dose prediction. J Thromb Thrombolysis 2010; 30: 358-364.
- 15 Kimura R, Miyashita K, Kokubo Y. et al. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res 2007; 120: 181-186.
- 16 Wadelius M, Chen LY, Downes K. et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 2005; 5: 262-270.
- 17 Cha P, Mushiroda T, Takahashi A. et al. High-resolution SNP and haplotype maps of the human gamma-glutamyl carboxylase gene (GGCX) and association study between polymorphisms in GGCX and the warfarin maintenance dose requirement of the Japanese population. J Hum Genet 2007; 52: 856-864.
- 18 Loebstein R, Vecsler M, Kurnik D. et al. Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P450 2C9. Clin Pharmacol Ther 2005; 77: 365-372.
- 19 Wang TL, Li HL, Tjong WY. et al. Genetic factors contribute to patient-specific warfarin dose for Han Chinese. Clin Chim Acta 2008; 396: 76-79.
- 20 King C, Deych E, Milligan P. et al. Gamma-glutamyl carboxylase and its influence on warfarin dose. Thromb Haemost 2010; 104: 750-754.
- 21 Shikata E, Ieiri I, Ishiguro S. et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood 2004; 103: 2630-2635.
- 22 Chen LY, Eriksson N, Gwilliam R. et al. Gamma-glutamyl carboxylase (GGCX) microsatellite and warfarin dosing. Blood 2005; 106: 3673-3674.
- 23 Caldwell MD, Berg RL, Zhang KQ. et al. Evaluation of genetic factors for warfarin dose prediction. Clin Med Res 2007; 5: 8-16.
- 24 Chan S, Thalamuthu A, Goh B. et al. Exon sequencing and association analysis of EPHX1 genetic variants with maintenance warfarin dose in a multiethnic Asian population. Pharmacogenet Genomics 2011; 21: 35-41.
- 25 Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 2005; 76: 887-893.
- 26 Rieder MJ, Reiner AP, Rettie AE. Gamma-glutamyl carboxylase (GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose. J Thromb Haemost 2007; 5: 2227-2234.
- 27 Tham LS, Goh BC, Nafziger A. et al. A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther 2006; 80: 346-355.
- 28 R Development Core Team.. R: A Language and Environment for Statistical Computing. 2010 Available at: http://www.R-project.org.
- 29 Pérez-Andreu V, Roldán V, Antón A. et al. Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy. Blood 2009; 113: 4977-4979.
- 30 Teichert M, Eijgelsheim M, Rivadeneira F. et al. A genome-wide association study of acenocoumarol maintenance dosage. Hum Mol Genet 2009; 18: 3758-3768.
- 31 Teichert M, Eijgelsheim M, Uitterlinden A. et al. Dependency of phenprocoumon dosage on polymorphisms in the VKORC1, CYP2C9, and CYP4F2 genes. Pharmacogenet Genomics 2011; 21: 26-34.
- 32 Cadamuro J, Dieplinger B, Felder T. et al. Genetic determinants of acenocoumarol and phenprocoumon maintenance dose requirements. Eur J Clin Pharmacol 2010; 66: 253-260.
- 33 Luxembourg B, Schneider K, Sittinger K. et al. Impact of pharmacokinetic (CYP2C9) and pharmacodynamic (VKORC1, F7, GGCX, CALU, EPHX1) gene variants on the initiation and maintenance phases of phenprocoumon therapy. Thromb Haemost 2011; 105: 169-180.
- 34 Gauderman W, Morrison J. QUANTO 1.1: A computer program for power and sample size calculations for genetic-epidemiology studies. 2006 Available at: http://hydra.usc.edu/gxe.