Thromb Haemost 2011; 106(05): 820-826
DOI: 10.1160/TH11-05-0291
Theme Issue Article
Schattauer GmbH

Mast cells in atherosclerosis

Ilze Bot
1   Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Gorlaeus Laboratories, Leiden, The Netherlands
,
Erik A. L. Biessen
2   Pathology, University of Maastricht, Maastricht, The Netherlands
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 02. Mai 2011

Accepted after major revision: 11. Juli 2011

Publikationsdatum:
23. November 2017 (online)

Summary

The mast cell, a potent inflammatory cell type, is widely distributed over several tissues, but particularly prominent at the interface exposed to the environment to act in the first line of defense against pathogens. Upon activation mast cells release granules, which contain a large panel of mediators, including neutral proteases (e.g. chymase and tryptase), cathepsins, heparin, histamine and a variety of cytokines and growth factors. While mast cells have been demonstrated to be critically involved in a number of Th2 dominated diseases such as asthma and allergy, recent investigations have now also implicated mast cells in the pathogenesis of atherosclerosis and acute cardiovascular syndromes. In this review, we will discuss the contribution of mast cells to the initiation and progression of atherosclerosis and gauge the therapeutic opportunities of mast cell targeted intervention in acute cardiovascular syndromes.

 
  • References

  • 1 Ehrlich P. Beiträge zur Theorie und Praxis der histologischen Färbung. Thesis: Leipzig University; 1878
  • 2 Ehrlich P. Beiträge zur Kenntniss der Anilinfärbungen und ihrer Verwendung in der mikroskopischen Technik. Arch Mikr Anat 1877; 13: 263
  • 3 Vyas H, Krishnaswamy G. Paul Ehrlich's „Mastzellen“--from aniline dyes to DNA chip arrays: a historical review of developments in mast cell research. Methods Mol Biol 2006; 315: 3-11.
  • 4 Krishnaswamy G, Ajitawi O, Chi DS. The human mast cell: an overview. Methods Mol Biol 2006; 315: 13-34.
  • 5 Lusis AJ. Atherosclerosis. Nature 2000; 407: 233-241.
  • 6 Libby P. Inflammation in atherosclerosis. Nature 2002; 420: 868-874.
  • 7 Weber C, Zernecke A, Libby P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol. 2008; 8: 802-815.
  • 8 Shah PK. Molecular mechanisms of plaque instability. Curr Opin Lipidol 2007; 18: 492-499.
  • 9 Kaartinen M, Pentillä A, Kovanen PT. Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 1994; 90: 1669-1678.
  • 10 Kaartinen M, Penttilä A, Kovanen PT. Mast cells of two types differing in neutral protease composition in the human aortic intima. Demonstration of tryptase- and tryptase/chymase-containing mast cells in normal intimas, fatty streaks, and the shoulder region of atheromas. Arterioscler Thromb 1994; 14: 966-972.
  • 11 Kovanen PT, Kaartinen M, Paavonen T. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 1995; 92: 1084-1088.
  • 12 Constantinides P. Mast cells and susceptibility to experimental atherosclerosis. Science 1953; 117: 505-506.
  • 13 Cairns A, Constantinides P. Mast cells in human atherosclerosis. Science 1954; 120: 31-32.
  • 14 Laine P, Kaartinen M, Pentillä A. et al. Association between myocardial infarction and the mast cells in the adventitia of the infarct-related coronary artery. Circulation 1999; 99: 361-369.
  • 15 Atkinson JB, Harlan CW, Harlan GC et al.. The association of mast cells and atherosclerosis: a morphologic study of early atherosclerotic lesions in young people. Hum Pathol 1994; 25: 154-159.
  • 16 Jeziorska M, McCollum C, Woolley DE. Mast cell distribution, activation, and phenotype in atherosclerotic lesions of human carotid arteries. J Pathol. 1997; 182: 115-22. Erratum in: J Pathol 1997; 183: 248
  • 17 Kaartinen M, Penttilä A, Kovanen PT. Extracellular mast cell granules carry apolipoprotein B-100-containing lipoproteins into phagocytes in human arterial intima. Functional coupling of exocytosis and phagocytosis in neighbouring cells. Arterioscler Thromb Vasc Biol 1995; 15: 2047-2054.
  • 18 Kamat BR, Galli SJ, Barger AC. et al. Neovascularization and coronary atherosclerotic plaque: cinematographic localization and quantitative histologic analysis. Hum Pathol 1987; 18: 1036-1042.
  • 19 Kaartinen M, Pentillä A, Kovanen PT. Mast cells accompany microvessels in human coronary atheromas: implications for intimal neovascularization and hemorrhage. Atherosclerosis 1996; 123: 123-131.
  • 20 Lappalainen H, Laine P, Pentikäinen MO. et al. Mast cells in neovascularized human coronary plaques store and secrete basic fibroblast growth factor, a potent angiogenic mediator. Arterioscler Thromb Vasc Biol 2004; 24: 1880-1885.
  • 21 Mäyränpää MI, Heikkilä HM, Lindstedt KA. et al. Desquamation of human coronary artery endothelium by human mast cell proteases: implications for plaque erosion. Coron Artery Dis 2006; 17: 611-621.
  • 22 Laine P, Naukkarinen A, Heikkilä L. et al. Adventitial mast cells connect with sensory nerve fibers in atherosclerotic coronary arteries. Circulation 2000; 101: 1665-1669.
  • 23 Chaldakov GN, Fiore M, Stankulov IS. et al. NGF, BDNF, leptin, and mast cells in human coronary atherosclerosis and metabolic syndrome. Arch Physiol Biochem 2001; 109: 357-360.
  • 24 Korkmaz ME, Oto A, Saraçlar Y. et al. Levels of IgE in the serum of patients with coronary arterial disease. Int J Cardiol 1991; 31: 199-204.
  • 25 Kovanen PT, Mänttäri M, Palosuo T. et al. Prediction of myocardial infarction in dyslipidemic men by elevated levels of immunoglobulin classes A, E, and G, but not M. Arch Intern Med 1998; 158: 1434-1439.
  • 26 Inouye M, Silander K, Hamalainen E. et al. An immune response network associated with blood lipid levels. PLoS Genet 2010; 6: e1001113
  • 27 Shahzad F, Tawwab S, Afzal N. Association of interleukin-4 and IgE levels with LDL oxidation in atherosclerosis. Iran J Immunol 2010; 7: 109-116.
  • 28 Clejan S, Japa S, Clemetson C. et al. Blood histamine is associated with coronary artery disease, cardiac events and severity of inflammation and atherosclerosis. J Cell Mol Med 2002; 6: 583-592.
  • 29 van Haelst PL, Timmer JR, Crijns HJ. et al. No long-lasting or intermittent mast cell activation in acute coronary syndromes. Int J Cardiol 2001; 78: 75-80.
  • 30 Kervinen H, Kaartinen M, Mäkynen H. et al. Serum tryptase levels in acute coronary syndromes. Int J Cardiol 2005; 104: 138-143.
  • 31 Filipiak KJ, Tarchalska-Krynska B, Opolski G. et al. Tryptase levels in patients after acute coronary syndromes: the potential new marker of an unstable plaque?. Clin Cardiol 2003; 26: 366-372.
  • 32 Upadhya B, Kontos JL, Ardeshirpour F. et al. Relation of serum levels of mast cell tryptase of left ventricular systolic function, left ventricular volume or congestive heart failure. J Card Fail 2004; 10: 31-35.
  • 33 Deliargyris EN, Upadhya B, Sane DC. et al. Mast cell tryptase: a new biomarker in patients with stable coronary artery disease. Atherosclerosis 2005; 178: 381-386.
  • 34 Xiang M, Sun J, Lin Y. et al. Usefulness of serum tryptase level as an independent biomarker for coronary plaque instability in a Chinese population. Atherosclerosis 2011; 215: 494-499.
  • 35 Sue TK, Jaques LB. Susceptibility to experimental atherosclerosis: relation to mast cells and heparin. Atherosclerosis 1976; 25: 137-139.
  • 36 Kokkonen JO, Kovanen PT. Low density lipoprotein degradation by rat mast cells. Demonstration of extracellular proteolysis caused by mast cell granules. J Biol Chem 1985; 260: 14756-14763.
  • 37 Kokkonen JO, Vartiainen M, Kovanen PT. Low density lipoprotein degradation by secretory granules of rat mast cells. Sequential degradation of apolipoprotein B by granule chymase and carboxypeptidase A. J Biol Chem 1986; 261: 16067-16072.
  • 38 Kokkonen JO, Kovanen PT. Low-density-lipoprotein binding by mast-cell granules. Demonstration of binding of apolipoprotein B to heparin proteoglycan of exocytosed granules. Biochem J 1987; 241: 583-589.
  • 39 Kokkonen JO, Kovanen PT. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein. Proc Natl Acad Sci USA 1987; 84: 2287-2291.
  • 40 Kokkonen JO. Stimulation of rat peritoneal mast cells enhances uptake of low density lipoproteins by rat peritoneal macrophages in vivo. Atherosclerosis 1989; 79: 213-223.
  • 41 Lindstedt KA, Kokkonen JO, Kovanen PT. Inhibition of copper-mediated oxidation of LDL by rat serosal mast cells. A novel cellular protective mechanism involving proteolysis of the substrate under oxidative stress. Arterioscler Thromb 1993; 13: 23-32.
  • 42 Lindstedt KA. Inhibition of macrophage-mediated low density lipoprotein oxidation by stimulated rat serosal mast cells. J Biol Chem 1993; 268: 7741-7746.
  • 43 Yeong P, Ning Y, Xu Y. et al. Tryptase promotes human monocyte-derived macrophage foam cell formation by suppressing LXRalpha activation. Biochim Biophys Acta 2010; 1801: 567-576.
  • 44 Paananen K, Kovanen PT. Proteolysis and fusion of low density lipoprotein particles independently strengthen their binding to exocytosed mast cell granules. J Biol Chem 1994; 269: 2023-2031.
  • 45 Liao L, Starzyk RM, Granger DN. Molecular determinants of oxidized low-density lipoprotein-induced leukocyte adhesion and microvascular dysfunction. Arterioscler Thromb Vasc Biol 1997; 17: 437-444.
  • 46 Kelley J, Hemontolor G, Younis W. Mast cell activation by lipoproteins. Methods Mol Biol 2006; 315: 341-348.
  • 47 Kinoshita M, Okada M, Hara M. et al. Mast cell tryptase in mast cell granules enhances MCP-1 and interleukin-8 production in human endothelial cells. Arterioscler Thromb Vasc Biol 2005; 25: 1858-1863.
  • 48 Lappalainen J, Lindstedt KA, Oksjoki R. et al. OxLDL-IgG immune complexes induce expression and secretion of proatherogenic cytokines by cultured human mast cells. Atherosclerosis 2011; 214: 357-363.
  • 49 Judström I, Jukkola H, Metso J. et al. Mast cell-dependent proteolytic modification of HDL particles during anaphylactic shock in the mouse reduces their ability to induce cholesterol efflux from macrophage foam cells ex vivo. Atherosclerosis 2010; 208: 148-154.
  • 50 Bot I, de Jager SCA, Zernecke A. et al. Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. Circulation 2007; 115: 2516-2525.
  • 51 Leskinen MJ, Wang Y, Leszczynski D. et al. Mast cell chymase induces apoptosis of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2001; 21: 516-522.
  • 52 Leskinen MJ, Heikkila HM, Speer MY. et al. Mast cell chymase induces smooth muscle cell apoptosis by disrupting NF-kappaB-mediated survival signaling. Exp Cell Res 2006; 312: 1289-1298.
  • 53 Leskinen MJ, Lindstedt KA, Wang Y. et al. Mast cell chymase induces smooth muscle cell apoptosis by a mechanism involving fibronectin degradation and disruption of focal adhesions. Arterioscler Thromb Vasc Biol 2003; 23: 238-243.
  • 54 Lätti S, Leskinen M, Shiota N. et al. Mast cell-mediated apoptosis of endothelial cells in vitro: a paracrine mechanism involving TNF-alpha-mediated down-regulation of bcl-2 expression. J Cell Physiol 2003; 195: 130-138.
  • 55 Heikkilä HM, Lätti S, Leskinen MJ. et al. Activated mast cells induce endothelial cell apoptosis by a combined action of chymase and tumor necrosis factor-alpha. Arterioscler Thromb Vasc Biol 2008; 28: 309-314.
  • 56 Sun J, Sukhova GK, Wolters PJ. et al. Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 2007; 13: 719-724.
  • 57 Zhang J, Alcaide P, Liu L. et al. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils. PLoS One 2011; 6: e14525
  • 58 Heikkilä HM, Trosien J, Metso J. et al. Mast cells promote atherosclerosis by inducing both an atherogenic lipid profile and vascular inflammation. J Cell Biochem 2010; 109: 615-623.
  • 59 Tang YL, Yang YZ, Wang S. et al. Mast cell degranulator compound 48-80 promotes atherosclerotic plaque in apolipoprotein E knockout mice with perivascular common carotid collar placement. Chin Med J (Engl) 2009; 122: 319-325.
  • 60 Guo T, Chen WQ, Zhang C. et al. Chymase activity is closely related with plaque vulnerability in a hamster model of atherosclerosis. Atherosclerosis 2009; 207: 59-67.
  • 61 Bot I, Bot M, van Heiningen SH. et al. Mast cell chymase inhibition reduces atherosclerotic plaque progression and improves plaque stability in ApoE-/- mice. Cardiovasc Res 2011; 89: 244-252.
  • 62 Oksaharju A, Lappalainen J, Tuomainen AM. et al. Pro-atherogenic lung and oral pathogens induce an inflammatory response in human and mouse mast cells. J Cell Mol Med 2009; 13: 103-113.
  • 63 Hauer AD, de Vos P, Peterse N. et al. Delivery of Chlamydia pneumoniae to the vessel wall aggravates atherosclerosis in LDLr-/- mice. Cardiovasc Res. 2006; 69: 280-288.
  • 64 Zhang T, Kurita-Ochiai T, Hashizume T. et al. Aggregatibacter actinomycetemcomitans accelerates atherosclerosis with an increase in atherogenic factors in spontaneously hyperlipidemic mice. FEMS Immunol Med Microbiol 2010; 59: 143-151.
  • 65 Walport MJ. Complement. First of two parts. N Engl J Med 2001; 344: 1058-1066.
  • 66 Walport MJ. Complement. Second of two parts. N Engl J Med 2001; 344: 1140-1144.
  • 67 Niculescu F, Rus H. Complement activation and atherosclerosis. Mol Immunol 1999; 36: 949-955.
  • 68 Oksjoki R, Laine P, Helske S. et al. Receptors for the anaphylatoxins C3a and C5a are expressed in human atherosclerotic coronary plaques. Atherosclerosis 2007; 195: 90-99.
  • 69 Laine P, Pentikäinen MO, Würzner R. et al. Evidence for complement activation in ruptured coronary plaques in acute myocardial infarction. Am J Cardiol. 2002; 90: 404-408.
  • 70 Bot I, de Jager SCA, Bot M. et al. The neuropeptide substance P mediates adventitial mast cell activation and induces intraplaque hemorrhage in advanced atherosclerosis. Circ Res 2010; 106: 89-92.