Thromb Haemost 2012; 108(04): 590-591
DOI: 10.1160/TH12-08-0613
Theme Issue Editorial
Schattauer GmbH

Circulating miRNAs: messengers on the move in cardiovascular disease

Virginia Egea
1   Institute for Prevention of Cardiovascular Disease, Ludwig-Maximilians-University, Munich, Germany
,
Andreas Schober
1   Institute for Prevention of Cardiovascular Disease, Ludwig-Maximilians-University, Munich, Germany
,
Christian Weber
1   Institute for Prevention of Cardiovascular Disease, Ludwig-Maximilians-University, Munich, Germany
› Author Affiliations
Further Information

Publication History

Received: 27 August 2012

Accepted: 30 August 2012

Publication Date:
29 November 2017 (online)

Note: The review process for this paper was fully handled by G. Y. H. Lip, Editor in Chief.

 
  • References

  • 1 Bartel DP. MicroRNAs: genomics, biogenesis mechanism, and function. Cell 2004; 116: 281-297.
  • 2 Fichtlscherer S, De Rosa S, Fox H. et al. Circulating microRNAs in patients with coronary artery disease. Circ Res 2010; 107: 677-684.
  • 3 Weber C, Schober A, Zernecke A. MicroRNAs in arterial remodelling, inflammation and atherosclerosis. Curr Drug Targets 2010; 11: 950-956.
  • 4 Zampetaki A, Willeit P, Drozdov I. et al. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res 2012; 93: 555-562.
  • 5 Zameptaki A, Mayr M. Analytical challenges and technical limitations in assessing circulating MiR-NAs. Thromb Haemost 2012; 108: 592-598.
  • 6 Broos K, Feys HB, De Meyer SF. et al. Platelets at work in primary hemostasis. Blood Rev 2001; 25: 155-167.
  • 7 Lievens D, von Hundelshausen P. Platelets in atherosclerosis. Thromb Haemost 2011; 106: 827-838.
  • 8 Sibbing D, Byrne RA, Bernlochner I, Kastrati A. High platelet reactivity and clinical outcome - fact and fiction. Thromb Haemost 2011; 106: 191-202.
  • 9 Roth GJ, Hickey MJ, Chung DW, Hickstein DD. Circulating human blood platelets retain appreciable amounts of poly (A)+ RNA. Biochem Biophys Res Commun 1989; 160: 705-710.
  • 10 Landry P, Plante I, Ouellet DL. et al. Existence of a microRNA pathway in anucleate platelets. Nature Struct Mol Biol 2009; 16: 961-966.
  • 11 Dangwal S, Thum T. MicroRNAs in platelet biogenesis and function. Thromb Haemost 2012; 108: 599-604.
  • 12 Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011; 469: 336-342.
  • 13 Sondermeijer BM, Bakker A, Halliani A. et al. Platelets in patients with premature coronary artery disease exhibit upregulation of miRNA340* and miRNA624*. PloS one 2010; 06: e25946.
  • 14 Girardot M, Pecquet C, Boukour S. et al. miR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets. Blood 2010; 116: 427-445.
  • 15 Boccardo P, Remuzzi G, Galbusera M. Platelet dysfunction in renal failure. Semin Thromb Hemost 2004; 30: 579-589.
  • 16 Plé H, Maltais M, Corduan A. et al. Alteration of the platelet transcriptome in chronic kidney disease. Thromb Haemost 2012; 108: 605-615.
  • 17 Boon RA, Hergenreider E, Dimmeler S. Atheroprotective mechanisms of shear stress-regulated microRNAs. Thromb Haemost 2012; 108: 616-620.
  • 18 Cordes KR, Sheehy NT, White MP. et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009; 460: 705-710.
  • 19 Zernecke A, Bidzhekov K, Noels H. et al. Delivery of micrRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection. Sci Signal 2009; 02: ra81.
  • 20 Hergenreider E, Heydt S, Treguer K. et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 2012; 14: 249-256.
  • 21 Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 2011; 17: 1410-1422.