RSS-Feed abonnieren
DOI: 10.1160/TH13-10-0891
The effect of CYP2C19 gene polymorphisms on the pharmacokinetics and pharmacodynamics of prasugrel 5-mg, prasugrel 10-mg and clopidogrel 75-mg in patients with coronary artery disease
Financial support:This study was funded by Daiichi Sankyo Co., Ltd. and Eli Lilly and Company.Publikationsverlauf
Received:
31. Oktober 2013
Accepted after major revision:
14. März 2014
Publikationsdatum:
02. Dezember 2017 (online)
Summary
CYP2C19 genotype has been shown to impact response to clopidogrel 75-mg but not prasugrel 10-mg. Here, we assessed effects of CYP2C19 metaboliser status on pharmacokinetics (PK) and pharmacodynamic (PD) responses to prasugrel 5-mg and 10-mg and clopidogrel 75-mg using data from two PK/PD studies in stable coronary artery disease (CAD) patients (GENERATIONS and FEATHER). Active metabolite concentrations (area under the curve, AUC[0-tlast]), maximum platelet aggregation (MPA) measured by light transmission aggregometry, vasodilator- stimulated phosphoprotein platelet reactivity index, and VerifyNow P2Y12-platelet reaction units (VN-PRU) were analysed by CYP2C19-predicted phenotype (extensive metaboliser [EM; N=154], *2-*8 non-carriers, vs reduced metaboliser [RM; N=41],*2-*8 carriers/* 17 non-carriers). AUC(0-tlast) was unaffected by metaboliser status for prasugrel 5-mg and 10-mg (geometric mean EM/RM ratios 1.00, 95% confidence interval [CI]: 0.86,1.17, p>0.99; and 0.97, 95% CI:0.85,1.12, p=0.71, respectively), but was lower among RMs receiving clopidogrel 75-mg (1.37, 95% CI:1.14,1.65, p<0.001). Platelet reactivity was not significantly affected by CYP2C19 metaboliser status for prasugrel 5-mg, or for prasugrel 10-mg by MPA and VNPRU, but for clopidogrel 75-mg was significantly higher in reduced metabolisers (all measures p<0.01). Prasugrel 10-mg showed greater antiplatelet effects vs clopidogrel 75-mg (all comparisons p<0.001). Prasugrel 5-mg showed greater antiplatelet effects vs clopidogrel 75-mg in RMs (all p<0.001), and comparable effects in EMs (all p≥0.37). In contrast to clopidogrel, prasugrel active metabolite PK was not influenced by CYP2C19 genotype. Antiplatelet effect for prasugrel 10-mg was greater irrespective of metaboliser status and for prasugrel 5-mg was greater for RMs and comparable for EMs as compared to clopidogrel 75-mg.
-
References
- 1 Mega JL, Close SL, Wiviott SD. et al. Cytochrome P450 genetic polymorphisms and the response to prasugrel: relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes. Circulation 2009; 119: 2553-2560.
- 2 Varenhorst C, James S, Erlinge D. et al. Genetic variation of CYP2C19 affects both pharmacokinetic and pharmacodynamic responses to clopidogrel but not prasugrel in aspirin-treated patients with coronary artery disease. Eur Heart J 2009; 30: 1744-1752.
- 3 Wiviott SD, Braunwald E, McCabe CH. et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007; 357: 2001-2015.
- 4 Riesmeyer JS, Salazar DE, Weerakkody GJ. et al. Relationship Between Exposure to Prasugrel Active Metabolite and Clinical Outcomes in the TRITON-TIMI 38 Substudy. J Clin Pharmacol 2012; 52: 789-797.
- 5 Erlinge D, Gurbel PA, James S. et al. Prasugrel 5-mg in the very elderly attenuates platelet inhibition but maintains non-inferiority to prasugrel 10-mg in non-elderly patients: The GENERATIONS trial, a pharmacodynamic and pharmacokinetic study in stable coronary artery disease patients. J Am Coll Cardiol 2013; 62: 577-583.
- 6 Erlinge D, ten Berg J, Foley D. et al. Reduction in platelet reactivity with prasugrel 5 mg in low-body-weight patients is noninferior to prasugrel 10 mg in higher-body-weight patients: results from the FEATHER trial. J Am Coll Cardiol 2012; 60: 2032-2040.
- 7 Sim SC, Ingelman-Sundberg M. The Human Cytochrome P450 (CYP) Allele Nomenclature website: a peer-reviewed database of CYP variants and their associated effects. Hum Genomics 2010; 04: 278-281.
- 8 Mega JL, Close SL, Wiviott SD. et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 2009; 360: 354-362.
- 9 Mega JL, Close SL, Wiviott SD. et al. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet 2010; 376: 1312-1319.
- 10 Cuisset T, Loosveld M, Morange PE. et al. CYP2C19*2 and *17 alleles have a significant impact on platelet response and bleeding risk in patients treated with prasugrel after acute coronary syndrome. JACC Cardiovasc Interv 2012; 05: 1280-1287.
- 11 Grosdidier C, Quilici J, Loosveld M. et al. Effect of CYP2C19*2 and *17 Genetic Variants on Platelet Response to Clopidogrel and Prasugrel Maintenance Dose and Relation to Bleeding Complications. Am J Cardiol 2013; 111: 985-990.