Thromb Haemost 2014; 112(02): 332-341
DOI: 10.1160/TH13-12-1026
Platelets and Blood Cells
Schattauer GmbH

Apolipoprotein B100 danger-associated signal 1 (ApoBDS-1) triggers platelet activation and boosts platelet-leukocyte proinflammatory responses

Alice Assinger
1   Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
2   Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
,
Yajuan Wang
2   Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
3   Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
,
Lynn M. Butler
2   Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
,
Göran K. Hansson
2   Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
,
Zhong-qun Yan
2   Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
,
Cecilia Söderberg-Nauclér
2   Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
,
Daniel F. J. Ketelhuth
2   Center for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
› Author Affiliations
Financial support: This study was supported by the CERIC Linnaeus Program (Center of Excellence for Research on Inflammation and Cardiovascular disease—349–2007–8703), the Swedish Research Council-Medicine (project grants 521–2009–4203, 521–2012–2440), the Swedish Heart-Lung Foundation, Karolinska Institute Cardiovascular Program Career Development Grant, the Swedish Foundation for Strategic Research (SSF), Vinnova Foundation, Åke Wibergs Stiftelse, Stiftelsen för Gamla Tjänarinnor, Stiftelsen för alders sjukdomar vid Karolinska Institutet, Stiftelsen Professor Nanna Svartz fond, KI fond, European Union projects (Molstroke, AtheroRemo) and the Austrian Science Fond (FWF–P24978). YW is supported by the China Scholarship Council (CSC).
Further Information

Publication History

Received: 16 December 2013

Accepted after major revision: 20 March 2014

Publication Date:
04 December 2017 (online)

Summary

Low-density lipoproteins (LDL), occurring in vivo in both their native and oxidative form, modulate platelet function and thereby contribute to atherothrombosis. We recently identified and demonstrated that ‘ApoB100 danger-associated signal 1’ (ApoBDS-1), a native peptide derived from Apolipoprotein B-100 (ApoB100) of LDL, induces inflammatory responses in innate immune cells. Platelets are critically involved in the development as well as in the lethal consequences of atherothrombotic diseases, but whether ApoBDS-1 has also an impact on platelet function is unknown. In this study we examined the effect of ApoBDS-1 on human platelet function and platelet-leukocyte interactions in vitro. Stimulation with ApoBDS-1 induced platelet activation, degranulation, adhesion and release of proinflammatory cytokines. ApoBDS-1-stimulated platelets triggered innate immune responses by augmenting leukocyte activation, adhesion and transmigration to/through activated HUVEC monolayers, under flow conditions. These platelet-activating effects were sequence-specific, and stimulation of platelets with ApoBDS-1 activated intracellular signalling pathways, including Ca2+, PI3K/Akt, PLC, and p38– and ERKMAPK. Moreover, our data indicates that ApoBDS-1-induced platelet activation is partially dependent of positive feedback from ADP on P2Y1 and P2Y12, and TxA2. In conclusion, we demonstrate that ApoBDS-1 is an effective platelet agonist, boosting platelet-leukocyte’s proinflammatory responses, and potentially contributing to the multifaceted inflammatory-promoting effects of LDL in the pathogenesis of atherothrombosis.

 
  • References

  • 1 Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352: 1685-1695.
  • 2 Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995; 92: 657-671.
  • 3 Lievens D, Zernecke A, Seijkens T. et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010; 116: 4317-4327.
  • 4 Gerdes N, Zhu L, Ersoy M. et al. Platelets regulate CD4+ T-cell differentiation via multiple chemokines in humans. Thromb Haemost 2011; 106: 353-362.
  • 5 Weber C. Platelets and chemokines in atherosclerosis: partners in crime. Circ Res 2005; 96: 612-616.
  • 6 Weyrich AS, Zimmerman GA. Platelets: signalling cells in the immune continuum. Trends Immunol 2004; 25: 489-495.
  • 7 Ketelhuth DF, Hansson GK. Cellular immunity, low-density lipoprotein and atherosclerosis: Break of tolerance in the artery wall. Thromb Haemost 2011; 106: 779-786.
  • 8 Relou IA, Hackeng CM, Akkerman JW. et al. Low-density lipoprotein and its effect on human blood platelets. Cell Mol Life Sci 2003; 60: 961-971.
  • 9 Engelmann B, Kogl C, Kulschar R. et al. Transfer of phosphatidylcholine, phos-phatidylethanolamine and sphingomyelin from low- and high-density lipoprotein to human platelets. Biochem J 1996; 315: 781-789.
  • 10 Relou AM, Gorter G, van Rijn HJ. et al. Platelet activation by the apoB/E receptor-binding domain of LDL. Thromb Haemost 2002; 87: 880-887.
  • 11 Relou IA, Gorter G, Ferreira IA. et al. Platelet endothelial cell adhesion molecule-1 (PECAM-1) inhibits low density lipoprotein-induced signalling in platelets. J Biol Chem 2003; 278: 32638-32644.
  • 12 Koller E, Koller F. Binding characteristics of homologous plasma lipoproteins to human platelets. Methods Enzymol 1992; 215: 383-398.
  • 13 Siess W. Platelet interaction with bioactive lipids formed by mild oxidation of low-density lipoprotein. Pathophysiol Haemost Thromb 2006; 35: 292-304.
  • 14 Hermansson A, Johansson DK, Ketelhuth DF. et al. Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation 2011; 123: 1083-1091.
  • 15 Hermansson A, Ketelhuth DF, Strodthoff D. et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med 2010; 207: 1081-1093.
  • 16 Ketelhuth DF, Tonini GC, Carvalho MD. et al. Autoantibody response to chromatographic fractions from oxidized LDL in unstable angina patients and healthy controls. Scand J Immunol 2008; 68: 456-462.
  • 17 Fredrikson GN, Hedblad B, Berglund G. et al. Identification of immune responses against aldehyde-modified peptide sequences in apoB associated with cardiovascular disease. Arterioscler Thromb Vasc Biol 2003; 23: 872-878.
  • 18 Ketelhuth DF, Rios FJ, Wang Y. et al. Identification of a danger-associated peptide from apolipoprotein B100 (ApoBDS-1) that triggers innate proatherogenic responses. Circulation 2011; 124: 2433-2443. 1-7.
  • 19 Havel RJ, Eeder HA, Gragdon JH. [The distribuition and chemical composition of ultracentrifugally separated lipoproteins in human serum]. J Clin Invest 1955; 34: 345-353.
  • 20 Volf I, Bielek E, Moeslinger T. et al. Modification of protein moiety of human low density lipoprotein by hypochlorite generates strong platelet agonist. Arterioscler Thromb Vasc Biol 2000; 20: 2011-2018.
  • 21 Assinger A, Koller F, Schmid W. et al. Specific binding of hypochlorite-oxidized HDL to platelet CD36 triggers proinflammatory and procoagulant effects. Atherosclerosis 2010; 212: 153-160.
  • 22 Assinger A, Laky M, Schabbauer G. et al. Efficient phagocytosis of periodonto-pathogens by neutrophils requires plasma factors, platelets and TLR2. JThromb-Haemost 2011; 09: 799-809.
  • 23 Assinger A, Schmid W, Eder S. et al. Oxidation by hypochlorite converts protective HDL into a potent platelet agonist. FEBS Lett 2008; 582: 778-784.
  • 24 Butler LM, Jeffery HC, Wheat RL. et al. Kaposi’s sarcoma-associated herpesvirus infection of endothelial cells inhibits neutrophil recruitment through an interleukin-6-dependent mechanism: a new paradigm for viral immune evasion. J Virol 2011; 85: 7321-7332.
  • 25 Badrnya S, Butler LM, Soderberg-Naucler C. et al. Platelets directly enhance neutrophil transmigration in response to oxidised low-density lipoprotein. Thromb Haemost 2012; 108: 719-729.
  • 26 Jackson SP. Arterial thrombosis--insidious, unpredictable and deadly. Nat Med 2011; 17: 1423-1436.
  • 27 von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 2007; 100: 27-40.
  • 28 Badrnya S, Schrottmaier WC, Kral JB. et al. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler Thromb Vasc Biol 2014; 34: 571-580.
  • 29 Linden MD, Furman MI, Frelinger 3rd AL. et al. Indices of platelet activation and the stability of coronary artery disease. J Thromb Haemost 2007; 05: 761-765.
  • 30 Mach F, Schonbeck U, Sukhova GK. et al. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998; 394: 200-203.
  • 31 Lievens D, Zernecke A, Seijkens T. et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010; 116: 4317-4327.
  • 32 Henn V, Slupsky JR, Grafe M. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998; 391: 591-594.
  • 33 Korporaal SJ, Gorter G, van Rijn HJ. et al. Effect of oxidation on the platelet-activating properties of low-density lipoprotein. Arterioscler Thromb Vasc Biol 2005; 25: 867-872.
  • 34 Nergiz-Unal R, Lamers MM, Van Kruchten R. et al. Signalling role of CD36 in platelet activation and thrombus formation on immobilized thrombospondin or oxidized low-density lipoprotein. J Thromb Haemost 2011; 09: 1835-1846.
  • 35 Chen K, Febbraio M, Li W. et al. A specific CD36-dependent signalling pathway is required for platelet activation by oxidized low-density lipoprotein. Circ Res 2008; 102: 1512-1519.
  • 36 Li Z, Delaney MK, O’Brien KA. et al. Signalling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol 2010; 30: 2341-2349.
  • 37 Stojanovic A, Marjanovic JA, Brovkovych VM. et al. A phosphoinositide 3-kinase-AKT-nitric oxide-cGMP signalling pathway in stimulating platelet secretion and aggregation. J Biol Chem 2006; 281: 16333-16339.
  • 38 Cardin AD, Witt KR, Chao J. et al. Degradation of apolipoprotein B-100 of human plasma low density lipoproteins by tissue and plasma kallikreins. J Biol Chem 1984; 259: 8522-8528.
  • 39 Edelstein C, Nakajima K, Pfaffinger D. et al. Oxidative events cause degradation of apoB-100 but not of apo[a] and facilitate enzymatic cleavage of both proteins. J Lipid Res 2001; 42: 1664-16670.
  • 40 Schuh J, Fairclough Jr GF, Haschemeyer RH. Oxygen-mediated heterogeneity of apo-low-density lipoprotein. Proc Natl Acad Sci USA 1978; 75: 3173-3177.
  • 41 Forgez P, Gregory H, Young JA. et al. Identification of surface-exposed segments of apolipoprotein B-100 in the LDL particle. BiochemBiophysResCommun 1986; 140: 250-257.
  • 42 Pentikainen MO, Oorni K, Ala-Korpela M. et al. Modified LDL - trigger of atherosclerosis and inflammation in the arterial intima. J Intern Med 2000; 247: 359-370.
  • 43 Bengtsson T, Karlsson H, Gunnarsson P. et al. The periodontal pathogen Por-phyromonas gingivalis cleaves apoB-100 and increases the expression of apoM in LDL in whole blood leading to cell proliferation. J Intern Med 2008; 263: 558-571.
  • 44 Pierides C, Bermudez-Fajardo A, Fredrikson GN. et al. Immune responses elicited by apoB-100-derived peptides in mice. Immunol Res 2013; 56: 96-108.
  • 45 Nilsson J, Bjorkbacka H, Fredrikson GN. Apolipoprotein B100 autoimmunity and atherosclerosis - disease mechanisms and therapeutic potential. Curr Opin Lipidol 2012; 23: 422-428.