Thromb Haemost 2015; 113(05): 1095-1108
DOI: 10.1160/TH14-04-0336
Cellular Signalling and Proteolysis
Schattauer GmbH

Mechanism and functional impact of CD40 ligand-induced von Willebrand factor release from endothelial cells

Kerstin Möller
1   Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
,
Oliver Adolph
1   Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
,
Jennifer Grünow
1   Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
,
Julia Elrod
1   Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
,
Miruna Popa
1   Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
,
Subhajit Ghosh
1   Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
,
Manuel Schwarz
1   Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
,
Chrysovalandis Schwale
2   Division of Neuro- and Sensory Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
,
Sandra Grässle
3   Division of Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
,
Volker Huck
3   Division of Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
,
Claus Bruehl
2   Division of Neuro- and Sensory Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
,
Thomas Wieland
4   Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
,
Stefan W. Schneider
3   Division of Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
,
Rainer Nobiling
1   Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
,
Andreas H. Wagner
1   Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
,
Markus Hecker
1   Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
› Author Affiliations
Financial support: This work was supported by a grant from the Deutsche Forschungsgemeinschaft (TRR 23 project sections MGK, A9, B6 and C6, and FOR 1543 project section A2), the European Commission (Marie-Curie ITN SmArt and SmArteR), and internal funds.
Further Information

Publication History

Received: 11 April 2014

Accepted after major revision: 28 January 2014

Publication Date:
24 November 2017 (online)

Summary

Co-stimulation via CD154 binding to CD40, pivotal for both innate and adaptive immunity, may also link haemostasis to vascular remodelling. Here we demonstrate that human platelet-bound or recombinant soluble CD154 (sCD154) elicit the release from and tethering of ultra-large (UL) von Willebrand factor (vWF) multimers to the surface of human cultured endothelial cells (ECs) exposed to shear stress. This CD40-mediated ULVWF multimer release from the Weibel-Palade bodies was triggered by consecutive activation of TRAF6, the tyrosine kinase c-Src and phospholipase Cγ1 followed by inositol-1,4,5 tris-phosphate-mediated calcium mobilisation. Subsequent exposure to human washed platelets caused ULVWF multimer-platelet string formation on the EC surface in a shear stress-dependent manner. Platelets tethered to these ULVWF multimers exhibited P-selectin on their surface and captured labelled monocytes from the superfusate. When exposed to shear stress and sCD154, native ECs from wild-type but not CD40 or vWF-deficient mice revealed a comparable release of ULVWF multimers to which murine washed platelets rapidly adhered, turning P-selectin-positive and subsequently capturing monocytes from the perfusate. This novel CD154-provoked ULVWF multimerplatelet string formation at normal to fast flow may contribute to vascular remodelling processes requiring the perivascular or intravascular accumulation of pro-inflammatory macrophages such as arteriogenesis or atherosclerosis.

K.M and O. A. contributed equally to this work.


A. H. W. and M. H. contributed equally to this work.


 
  • References

  • 1 Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 2011; 17: 1410-1422.
  • 2 Simionescu M. Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 2007; 27: 266-274.
  • 3 Bernardo A, Ball C, Nolasco L. et al. Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J Thromb Haemost 2005; 03: 562-570.
  • 4 Dole VS, Bergmeier W, Mitchell HA. et al. Activated platelets induce Weibel-Palade-body secretion and leukocyte rolling in vivo: role of P-selectin. Blood 2005; 106: 2334-2339.
  • 5 van Gils JM, Zwaginga JJ, Hordijk PL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol 2009; 85: 195-204.
  • 6 Petri B, Broermann A, Li H. et al. von Willebrand factor promotes leukocyte extravasation. Blood 2010; 116: 4712-4719.
  • 7 Hansson GK, Libby P, Schonbeck U. et al. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 2002; 91: 281-291.
  • 8 Korff T, Aufgebauer K, Hecker M. Cyclic stretch controls the expression of CD40 in endothelial cells by changing their transforming growth factor-beta1 response. Circulation 2007; 116: 2288-2297.
  • 9 Henn V, Steinbach S, Buchner K. et al. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD 40. Blood 2001; 98: 1047-1054.
  • 10 Wagner AH, Guldenzoph B, Lienenluke B. et al. CD154/CD40-mediated expression of CD154 in endothelial cells: consequences for endothelial cell-monocyte interaction. Arterioscler Thromb Vasc Biol 2004; 24: 715-720.
  • 11 Morigi M, Zoja C, Figliuzzi M. et al. Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood 1995; 85: 1696-1703.
  • 12 Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 1999; 282: 2035-2042.
  • 13 Heil M, Ziegelhoeffer T, Wagner S. et al. Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-chemokine receptor-2. Circ Res 2004; 94: 671-677.
  • 14 Berriman JA, Li S, Hewlett LJ. et al. Structural organisation of Weibel-Palade bodies revealed by cryo-EM of vitrified endothelial cells. Proc Natl Acad Sci USA 2009; 106: 17407-1712.
  • 15 Wagner DD, Frenette PS. The vessel wall and its interactions. Blood 2008; 111: 5271-5281.
  • 16 Lenting PJ, Casari C, Christophe OD. et al. von Willebrand factor: the old, the new and the unknown. J Thromb Haemost 2012; 10: 2428-2437.
  • 17 Lienenluke B, Germann T, Kroczek RA. et al. CD154 stimulation of interleukin-12 synthesis in human endothelial cells. Eur J Immunol 2000; 30: 2864-2870.
  • 18 Berson RE, Purcell MR, Sharp MK. Computationally determined shear on cells grown in orbiting culture dishes. Adv Exp Med Biol 2008; 614: 189-198.
  • 19 Wagner AH, Hildebrandt A, Baumgarten S. et al. Tyrosine nitration limits stretch-induced CD40 expression and disconnects CD40 signalling in human endothelial cells. Blood 2011; 118: 3734-3742.
  • 20 Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.
  • 21 De Ceunynck K, Rocha S, Feys HB. et al. Local elongation of endothelial cell-anchored von Willebrand factor strings precedes ADAMTS13 protein-mediated proteolysis. J Biol Chem 2011; 286: 36361-36367.
  • 22 Chen H, Fallah MA, Huck V. et al. Blood-clotting-inspired reversible polymercolloid composite assembly in flow. Nat Commun 2013; 04: 1333.
  • 23 Cazenave JP, Ohlmann P, Cassel D. et al. Preparation of washed platelet suspensions from human and rodent blood. Methods Mol Biol 2004; 272: 13-28.
  • 24 Xiong Y, Huo Y, Chen C. et al. Vascular endothelial growth factor (VEGF) receptor-2 tyrosine 1175 signalling controls VEGF-induced von Willebrand factor release from endothelial cells via phospholipase C-gamma 1– and protein kinase A-dependent pathways. J Biol Chem 2009; 284: 23217-23224.
  • 25 Kim YM, Lee YM, Kim HS. et al. TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. J Biol Chem 2002; 277: 6799-6805.
  • 26 Tas PW, Stobetael C, Roewer N. The volatile anesthetic isoflurane inhibits the histamine-induced Ca2+ influx in primary human endothelial cells. Anesth Analg 2003; 97: 430-435.
  • 27 Ying H, Li Z, Yang L. et al. Syk mediates BCR-and CD40-signalling integration during B cell activation. Immunobiology 2011; 216: 566-570.
  • 28 Donners MM, Beckers L, Lievens D. et al. The CD40-TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodelling. Blood 2008; 111: 4596-4604.
  • 29 Ding SF, Ni M, Liu XL. et al. A causal relationship between shear stress and atherosclerotic lesions in apolipoprotein E knockout mice assessed by ultrasound biomicroscopy. Am J Physiol Heart Circ Physiol 2010; 298: H2121-2129.
  • 30 Borissoff JI, Spronk HM, ten Cate H. The hemostatic system as a modulator of atherosclerosis. N Engl J Med 2011; 364: 1746-1760.
  • 31 Methia N, Andre P, Denis CV. et al. Localized reduction of atherosclerosis in von Willebrand factor-deficient mice. Blood 2001; 98: 1424-1428.
  • 32 Jin SY, Tohyama J, Bauer RC. et al. Genetic ablation of Adamts13 gene dramatically accelerates the formation of early atherosclerosis in a murine model. Arterioscler Thromb Vasc Biol 2012; 32: 1817-1823.
  • 33 Gandhi C, Khan MM, Lentz SR. et al. ADAMTS13 reduces vascular inflammation and the development of early atherosclerosis in mice. Blood 2012; 119: 2385-2391.
  • 34 Lopez JA, Dong JF. Shear stress and the role of high molecular weight von Willebrand factor multimers in thrombus formation. Blood Coagul Fibrinolysis 2005; 16 (Suppl. 01) S11-S16.
  • 35 De Ceunynck K, De Meyer SF, Vanhoorelbeke K. Unwinding the von Willebrand factor strings puzzle. Blood 2013; 121: 270-277.
  • 36 Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 1998; 339: 1585-1594.
  • 37 Levy GG, Nichols WC, Lian EC. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001; 413: 488-494.
  • 38 Zhang X, Halvorsen K, Zhang CZ. et al. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science 2009; 324: 1330-1334.
  • 39 Crawley JT, de Groot R, Xiang Y. et al. Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood 2011; 118: 3212-3221.
  • 40 Chen J, Ling M, Fu X. et al. Simultaneous Exposure of Sites in von Willebrand Factor for Glycoprotein Ib Binding and ADAMTS13 Cleavage: Studies With Ristocetin. Arterioscler Thromb Vasc Biol 2012; 32: 2625-2630.
  • 41 Kling SJ, Judd CA, Warner KB. et al. Regulation of ADAMTS13 expression in proliferating human umbilical vein endothelial cells. Pathophysiol Haemost Thromb 2008; 36: 233-240.
  • 42 Yan JC, Wu ZG, Kong XT. et al. Effect of CD40--CD40 ligand interaction on diacylglycerol-protein kinase C and inositol trisphosphate-Ca(2+) signal transduction pathway in human umbilical vein endothelial cells. Clin Chim Acta 2003; 337: 133-140.
  • 43 Liu F, Huang J, Sadler JE. Shiga toxin (Stx)1B and Stx2B induce von Willebrand factor secretion from human umbilical vein endothelial cells through different signalling pathways. Blood 2011; 118: 3392-3398.
  • 44 Babich V, Meli A, Knipe L. et al. Selective release of molecules from Weibel-Palade bodies during a lingering kiss. Blood 2008; 111: 5282-5290.
  • 45 Liu B, Lu S, Zheng S. et al. Two distinct phases of calcium signalling under flow. Cardiovasc Res 2011; 91: 124-133.
  • 46 Cao WJ, Niiya M, Zheng XW. et al. Inflammatory cytokines inhibit ADAMTS13 synthesis in hepatic stellate cells and endothelial cells. J Thromb Haemost 2008; 06: 1233-1235.