Thromb Haemost 2015; 114(06): 1175-1188
DOI: 10.1160/TH14-11-0958
Cellular Haemostasis and Platelets
Schattauer GmbH

Fibrillar cellular fibronectin supports efficient platelet aggregation and procoagulant activity

Eric Maurer
1   Unité mixte de recherche (UMR)_S949, Inserm, Strasbourg, France
2   Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
3   Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
4   Université de Strasbourg, Strasbourg, France
,
Mathieu Schaff
1   Unité mixte de recherche (UMR)_S949, Inserm, Strasbourg, France
2   Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
3   Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
4   Université de Strasbourg, Strasbourg, France
,
Nicolas Receveur
1   Unité mixte de recherche (UMR)_S949, Inserm, Strasbourg, France
2   Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
3   Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
4   Université de Strasbourg, Strasbourg, France
,
Catherine Bourdon
1   Unité mixte de recherche (UMR)_S949, Inserm, Strasbourg, France
2   Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
3   Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
4   Université de Strasbourg, Strasbourg, France
,
Luc Mercier
5   UMR_S1109, Inserm, Strasbourg, France
6   CHU Hautepierre, Strasbourg, France
,
Bernhard Nieswandt
7   University Hospital Würzburg, Würzburg, Germany
8   Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
,
Christophe Dubois
9   UMR_S1076, Inserm, Marseille, France
10   Faculté de Pharmacie, Marseille, France
,
Martine Jandrot-Perrus
11   UMR_S1148, Inserm, France
12   CHU Bichat, Paris, France
,
Jacky G. Goetz
5   UMR_S1109, Inserm, Strasbourg, France
6   CHU Hautepierre, Strasbourg, France
,
François Lanza
1   Unité mixte de recherche (UMR)_S949, Inserm, Strasbourg, France
2   Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
3   Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
4   Université de Strasbourg, Strasbourg, France
,
Christian Gachet
1   Unité mixte de recherche (UMR)_S949, Inserm, Strasbourg, France
2   Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
3   Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
4   Université de Strasbourg, Strasbourg, France
,
Pierre H. Mangin
1   Unité mixte de recherche (UMR)_S949, Inserm, Strasbourg, France
2   Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
3   Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
4   Université de Strasbourg, Strasbourg, France
› Institutsangaben
Financial support : This work was supported by INSERM, EFS, ARMESA (Association de Recherche et Développement en Médecine et Santé Publique), the Fondation de France (grant 2011–00020448) and a European FP7 grant (PRESTIGE 260309). Mathieu Schaff was supported by a “Contrat doctoral” from the French government and Eric Maurer by an “INSERM-Région Alsace” fellowship.
Weitere Informationen

Publikationsverlauf

Received: 18. November 2014

Accepted after major revision: 21. Juni 2015

Publikationsdatum:
30. November 2017 (online)

Summary

The ability of cellular fibronectin, found in the vessel wall in a fibrillar conformation, to regulate platelet functions and trigger thrombus formation remains largely unknown. In this study, we evaluated how parietal cellular fibronectin can modulate platelet responses under flow conditions. A fibrillar network was formed by mechanically stretching immobilised dimeric cellular fibronectin. Perfusion of anticoagulated whole blood over this surface resulted in efficient platelet adhesion and thrombus growth. The initial steps of platelet adhesion and activation, as evidenced by filopodia extension and an increase in intracellular calcium levels (419 ± 29 nmol/l), were dependent on integrins α5β1 and αIIbβ3. Subsequent thrombus growth was mediated by these integrins together with the GPIb-V-IX complex, GPVI and Toll-like receptor 4. The involvement of Toll-like receptor 4 could be conveyed via its binding to the EDA region of cellular fibronectin. Upon thrombus formation, the platelets became procoagulant and generated fibrin as revealed by video-microscopy. This work provides evidence that fibrillar cellular fibronectin is a strong thrombogenic surface which supports efficient platelet adhesion, activation, aggregation and procoagulant activity through the interplay of a series of receptors including integrins α5β1 and αIIbβ3, the GPIb-V-IX complex, GPVI and Toll-like receptor 4.

 
  • References

  • 1 Versteeg HH, Heemskerk JW, Levi M. et al. New fundamentals in hemostasis. Physiol Rev 2013; 93: 327-358.
  • 2 Jackson SP. Arterial thrombosis--insidious, unpredictable and deadly. Nature Med 2011; 17: 1423-1436.
  • 3 Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci 2002; 115: 3861-3863.
  • 4 George EL, Georges-Labouesse EN, Patel-King RS. et al. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 1993; 119: 1079-1091.
  • 5 Erridge C. Endogenous ligands of TLR2 and TLR4: agonists or assistants?. J Leukoc Biol 2010; 87: 989-999.
  • 6 Liao YF, Gotwals PJ, Koteliansky VE. et al. The EIIIA segment of fibronectin is a ligand for integrins alpha 9beta 1 and alpha 4beta 1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J Biol Chem 2002; 277: 14467-14474.
  • 7 Zerlauth G, Wolf G. Plasma fibronectin as a marker for cancer and other diseases. Am J Med 1984; 77: 685-689.
  • 8 Peters JH, Sporn LA, Ginsberg MH. et al. Human endothelial cells synthesize, process, and secrete fibronectin molecules bearing an alternatively spliced type III homology (ED1). Blood 1990; 75: 1801-1808.
  • 9 Glukhova MA, Frid MG, Shekhonin BV. et al. Expression of extra domain A fibronectin sequence in vascular smooth muscle cells is phenotype dependent. J Cell Biol 1989; 109: 357-366.
  • 10 van Keulen JK, de Kleijn DP, Nijhuis MM. et al. Levels of extra domain A containing fibronectin in human atherosclerotic plaques are associated with a stable plaque phenotype. Atherosclerosis 2007; 195: e83-91.
  • 11 Beumer S, Ijsseldijk MJ, de Groot PG. et al. Platelet adhesion to fibronectin in flow: dependence on surface concentration and shear rate, role of platelet membrane glycoproteins GP IIb/IIIa and VLA-5, and inhibition by heparin. Blood 1994; 84: 3724-3733.
  • 12 Beumer S, Heijnen HF, Ijsseldijk MJ. et al. Platelet adhesion to fibronectin in flow: the importance of von Willebrand factor and glycoprotein Ib. Blood 1995; 86: 3452-3460.
  • 13 McCarty OJ, Zhao Y, Andrew N. et al. Evaluation of the role of platelet integrins in fibronectin-dependent spreading and adhesion. J Thromb Haemost 2004; 02: 1823-1833.
  • 14 Bultmann A, Li Z, Wagner S. et al. Impact of glycoprotein VI and platelet adhesion on atherosclerosis--a possible role of fibronectin. J Mol Cell Cardiol 2010; 49: 532-542.
  • 15 Bastida E, Escolar G, Ordinas A. et al. Fibronectin is required for platelet adhesion and for thrombus formation on subendothelium and collagen surfaces. Blood 1987; 70: 1437-1442.
  • 16 Nievelstein PF, D’Alessio PA, Sixma JJ. Fibronectin in platelet adhesion to human collagen types I and III. Use of nonfibrillar and fibrillar collagen in flowing blood studies. Arteriosclerosis 1988; 08: 200-206.
  • 17 Cho J, Mosher DF. Enhancement of thrombogenesis by plasma fibronectin cross-linked to fibrin and assembled in platelet thrombi. Blood 2006; 107: 3555-3563.
  • 18 Ni H, Yuen PS, Papalia JM. et al. Plasma fibronectin promotes thrombus growth and stability in injured arterioles. Proc Natl Acad Sci USA 2003; 100: 2415-2419.
  • 19 Matuskova J, Chauhan AK, Cambien B. et al. Decreased plasma fibronectin leads to delayed thrombus growth in injured arterioles. Arterioscler Thromb Vasc Biol 2006; 26: 1391-1396.
  • 20 Santoro SA. Inhibition of platelet aggregation by fibronectin. Biochem Biophys Res Commun 1983; 116: 135-140.
  • 21 Moon DG, Kaplan JE, Mazurkewicz JE. The inhibitory effect of plasma fibronectin on collagen-induced platelet aggregation. Blood 1986; 67: 450-457.
  • 22 Tanabe J, Fujita H, Iwamatsu A. et al. Fibronectin inhibits platelet aggregation independently of RGD sequence. J Biol Chem 1993; 268: 27143-27147.
  • 23 Reheman A, Yang H, Zhu G. et al. Plasma fibronectin depletion enhances platelet aggregation and thrombus formation in mice lacking fibrinogen and von Willebrand factor. Blood 2009; 113: 1809-1817.
  • 24 Miekka S. Rapid methods for isolation of human plasma fibronectin. Thromb Res 1982; 24: 1-14.
  • 25 Tronik-Le Roux D, Roullot V, Schweitzer A. et al. Suppression of erythro-megakaryocytopoiesis and the induction of reversible thrombocytopenia in mice transgenic for the thymidine kinase gene targeted by the platelet glycoprotein alpha IIb promoter. J Exp Med 1995; 181: 2141-2151.
  • 26 Tiedt R, Schomber T, Hao-Shen H. et al. Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. Blood 2007; 109: 1503-1506.
  • 27 Potocnik AJ, Brakebusch C, Fassler R. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 2000; 12: 653-663.
  • 28 Bender M, Hagedorn I, Nieswandt B. Genetic and antibody-induced glycoprotein VI deficiency equally protects mice from mechanically and FeCl(3) -induced thrombosis. J Thromb Haemost 2011; 09: 1423-1426.
  • 29 Takaku T, Malide D, Chen J. et al. Hematopoiesis in 3 dimensions: human and murine bone marrow architecture visualized by confocal microscopy. Blood 2010; 116: e41-55.
  • 30 McDonald JC, Duffy DC, Anderson JR. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000; 21: 27-40.
  • 31 Schaff M, Receveur N, Bourdon C. et al. Novel function of tenascin-C, a matrix protein relevant to atherosclerosis, in platelet recruitment and activation under flow. Arterioscler Thromb Vasc Biol 2011; 31: 117-124.
  • 32 Kroll MH, Hellums JD, McIntire LV. et al. Platelets and shear stress. Blood 1996; 88: 1525-1541.
  • 33 Steward Jr. RL, Cheng CM, Ye JD. et al. Mechanical stretch and shear flow induced reorganisation and recruitment of fibronectin in fibroblasts. Scientific Rep 2011; 01: 147.
  • 34 Goetz JG, Minguet S, Navarro-Lerida I. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 2011; 146: 148-163.
  • 35 Beacham DA, Amatangelo MD, Cukierman E. Preparation of extracellular matrices produced by cultured and primary fibroblasts. Curr Prot Cell Biol 2007; 10: 10.9.
  • 36 Mangin P, Yuan Y, Goncalves I. et al. Signaling role for phospholipase C gamma 2 in platelet glycoprotein Ib alpha calcium flux and cytoskeletal reorganisation. Involvement of a pathway distinct from FcR gamma chain and Fc gamma RIIA. J Biol Chem 2003; 278: 32880-32891.
  • 37 Kulkarni S, Jackson SP. Platelet factor XIII and calpain negatively regulate inte-grin alphaIIbbeta3 adhesive function and thrombus growth. J Biol Chem 2004; 279: 30697-30706.
  • 38 Hui KY, Haber E, Matsueda GR. Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not fibrinogen. Science 1983; 222: 1129-1132.
  • 39 Hocking DC, Titus PA, Sumagin R. et al. Extracellular matrix fibronectin mechanically couples skeletal muscle contraction with local vasodilation. Circ Res 2008; 102: 372-379.
  • 40 To WS, Midwood KS. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogen Tissue Rep 2011; 04: 21.
  • 41 Lemmon CA, Chen CS, Romer LH. Cell traction forces direct fibronectin matrix assembly. Biophys J 2009; 96: 729-738.
  • 42 Berthet J, Damien P, Hamzeh-Cognasse H. et al. Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin Immunol 2012; 145: 189-200.
  • 43 Cognasse F, Hamzeh H, Chavarin P. et al. Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol 2005; 83: 196-198.
  • 44 Heemskerk JW, Vuist WM, Feijge MA. et al. Collagen but not fibrinogen surfaces induce bleb formation, exposure of phosphatidylserine, and procoagulant activity of adherent platelets: evidence for regulation by protein tyrosine kinase-dependent Ca2+ responses. Blood 1997; 90: 2615-2625.
  • 45 Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84: 289-297.
  • 46 Schaff M, Tang C, Maurer E. et al. Integrin alpha6beta1 is the Main Receptor for Vascular Laminins and Plays a Role in Platelet Adhesion, Activation and Arterial Thrombosis. Circulation 2013; 128: 541-552.
  • 47 Jurk K, Clemetson KJ, de Groot PG. et al. Thrombospondin-1 mediates platelet adhesion at high shear via glycoprotein Ib (GPIb): an alternative/backup mechanism to von Willebrand factor. FASEB J 2003; 17: 1490-1492.
  • 48 Savage B, Ginsberg MH, Ruggeri ZM. Influence of fibrillar collagen structure on the mechanisms of platelet thrombus formation under flow. Blood 1999; 94: 2704-2715.
  • 49 Morton LF, Peachey AR, Zijenah LS. et al. Conformation-dependent platelet adhesion to collagen involving integrin alpha 2 beta 1-mediated and other mechanisms: multiple alpha 2 beta 1-recognition sites in collagen type I. Biochem J 1994; 299: 791-797.
  • 50 Luo Y, Lu Z, Raso SW. et al. Dimers and multimers of monoclonal IgG1 exhibit higher in vitro binding affinities to Fcgamma receptors. MAbs 2009; 01: 491-504.
  • 51 Okamura Y, Watari M, Jerud ES. et al. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 2001; 276: 10229-10233.
  • 52 Zhang G, Han J, Welch EJ. et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol 2009; 182: 7997-8004.
  • 53 Chauhan AK. Prothrombotic Effects of Fibronectin Isoforms Containing the EDA Domain. Arterioscl Thromb Vasc Biol 2008; 28: 296-301.
  • 54 Prakash P, Kulkarni PP, Lentz SR. et al. Cellular fibronectin containing extra domain A promotes arterial thrombosis in mice through platelet toll-like receptor 4. Blood 2015; 14 (125) 3164-3172.
  • 55 Semeraro F, Ammollo CT, Morrissey JH. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118: 1952-1961.
  • 56 Brown GT, Narayanan P, Li W. et al. Lipopolysaccharide stimulates platelets through an IL-1beta autocrine loop. J Immunol 2013; 191: 5196-5203.
  • 57 Polanowska-Grabowska R, Simon Jr. CG, Gear AR. Platelet adhesion to collagen type I, collagen type IV, von Willebrand factor, fibronectin, laminin and fibrinogen: rapid kinetics under shear. Thromb Haemost 1999; 81: 118-123.
  • 58 Nesbitt WS, Westein E, Tovar-Lopez FJ. et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nature Med 2009; 15: 665-673.
  • 59 Farquharson C, Robins SP. Immunolocalisation of collagen types I and III in the arterial wall of the rat. Histochem J 1989; 21: 172-178.
  • 60 Parsons TJ, Haycraft DL, Hoak JC. et al. Interaction of platelets and purified collagens in a laminar flow model. Thromb Res 1986; 43: 435-443.
  • 61 Moretti FA, Chauhan AK, Iaconcig A. et al. A major fraction of fibronectin present in the extracellular matrix of tissues is plasma-derived. J Biol Chem 2007; 282: 28057-28062.
  • 62 Singh P, Carraher C, Schwarzbauer JE. Assembly of fibronectin extracellular matrix. Ann Rev Cell Developm Biol 2010; 26: 397-419.
  • 63 Matter CM, Schuler PK, Alessi P. et al. Molecular imaging of atherosclerotic plaques using a human antibody against the extra-domain B of fibronectin. Circ Res 2004; 95: 1225-1233.