Thromb Haemost 2016; 115(06): 1167-1177
DOI: 10.1160/TH15-03-0239
Endothelium and Angiogenesis
Schattauer GmbH

Bazedoxifene, a new orphan drug for the treatment of bleeding in hereditary haemorrhagic telangiectasia

Roberto Zarrabeitia
2   Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
3   Medicina Interna Hospital de Sierrallana, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
,
Luisa Ojeda-Fernandez
1   Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
2   Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
,
Lucia Recio
1   Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
,
Carmelo Bernabéu
1   Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
2   Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
,
José A. Parra
4   Servicio de Radiodiagnóstico, Hospital Universitario Marqués de Valdecilla, Santander, Spain
,
Virginia Albiñana
1   Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
,
Luisa M. Botella
1   Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
2   Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
› Author Affiliations
Further Information

Publication History

Received: 18 March 2015

Accepted after major revision: 25 January 2016

Publication Date:
27 November 2017 (online)

Summary

Hereditary haemorrhagic telangiectasia (HHT), or Rendu-Osler-Weber syndrome, is a dominant genetic vascular disorder. In HHT, blood vessels are weak and prone to bleeding, leading to epistaxis and anaemia, severely affecting patients’ quality of life. Development of vascular malformations in HHT patients is originated mainly by mutations in ACVRL1/ALK1 (activin receptor-like kinase type I) or Endoglin (ENG) genes. These genes encode proteins of the TGF-β signalling pathway in endothelial cells, controlling angiogenesis. Haploinsufficiency of these proteins is the basis of HHT pathogenicity. It was our objective to study the efficiency of Bazedoxifene, a selective estrogen receptor modulator (SERM) in HHT, looking for a decrease in epistaxis, and understanding the underlying molecular mechanism. Plasma samples of five HHT patients were collected before, and after 1 and 3 months of Bazedoxifene treatment. ENG and ALK1 expression in activated mononuclear cells derived from blood, as well as VEGF plasma levels, were measured. Quantification of Endoglin and ALK1 mRNA was done in endothelial cells derived from HHT and healthy donors, after in vitro treatment with Bazedoxifene. Angiogenesis was also measured by tubulogenesis and wound healing assays. Upon Bazedoxifene treatment, haemoglobin levels of HHT patients increased and the quantity and frequency of epistaxis decreased. Bazedoxifene increased Endoglin and ALK1 mRNA levels, in cells derived from blood samples and in cultured endothelial cells, promoting tube formation. In conclusion, Bazedoxifene seems to decrease bleeding in HHT by partial compensation of haploinsufficiency. The results shown here are the basis of a new orphan drug designation for HHT by the European Medicine Agency (EMA).

 
  • References

  • 1 Shovlin CL. Hereditary haemorrhagic telangiectasia, pathophysiology, diagnosis and treatment. Blood Rev 2010; 24: 203-219.
  • 2 Abdalla SA, Letarte M. Hereditary haemorrhagic telangiectasia, current views on genetics and mechanisms of disease. J Med Genet 2006; 43: 97-110.
  • 3 Govani FS, Shovlin CL. Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur J Hum. Genet 2009; 17: 860-871.
  • 4 Kjeldsen AD, Vase P, Green A. Hereditary haemorrhagic telangiectasia, a population based study of prevalence and mortality in Danish patients. J Int Med 1999; 245: 31-39.
  • 5 Plauchu H, de Chadarevian JP, Bideau A. et al. Age-related clinical profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet 1989; 32: 291-297.
  • 6 Shovlin CL, Letarte M. Hereditary haemorrhagic telangiectasia and pulmonary arteriovenous malformations, issues in clinical management and review of pathogenic mechanisms. Thorax 1999; 54: 714-729.
  • 7 Vázquez C, Santana A, Recio L. et al. Hereditary haemorrhagic telangiectasia in Las Palmas (Canary Islands). Hematology Reports 2013; 05 (Suppl. 01) 51.
  • 8 Shovlin CL, Guttmacher AE, Buscarini E. et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am J Med Genet 2000; 91: 66-67.
  • 9 Fernández-Ruiz E, St-Jacques S, Bellon T. et al. Assignment of the human Endoglin gene (END) to 9q34-->qter. Cytogenet Cell Genet 1993; 64: 204-207.
  • 10 McAllister KA, Grogg KM, Johnson DW. et al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nature Genet 1994; 08: 345-351.
  • 11 Johnson DW, Berg JN, Baldwin MA. et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 1996; 13: 189-195.
  • 12 Cajal AR, Ramirez CV, Bravo NC. et al. Identification of novel variants in Argentinean patients which suffer from HHT. Hematology Reports 2013; 05 (Suppl. 01) 48.
  • 13 Cole SG, Begbie ME, Wallace GM. et al. A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5. J Med Genet 2005; 42: 577-582.
  • 14 Bayrak-Toydemir P, McDonald J, Akarsu N. et al. A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7. Am J Med Genet 2006; 140: 2155-2162.
  • 15 Wooderchak-Donahue WL, McDonald J. et al. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet 2013; 93: 530-537.
  • 16 Santibañez JF, Quintanilla M, Bernabeu C. TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clin Sci 2011; 121: 233-251.
  • 17 Albiñana V, Bernabeu-Herrero ME, Zarrabeitia R. et al. Estrogen therapy for hereditary haemorrhagic telangiectasia (HHT): Effects of Raloxifene, on Endoglin and ALK1 expression in endothelial cells. Thromb Haemost 2010; 103: 525-534.
  • 18 Albiñana V, Sanz-Rodríguez F, Recio-Poveda L. et al. Immunosuppressor FK506 increases Endoglin and activin receptor-like kinase 1 expression and modulates transforming growth factor-β1 signaling in endothelial cells. Mol Pharmacol 2011; 79: 833-843.
  • 19 Fernandez-L A, Garrido-Martin EM, Sanz-Rodriguez F. et al. Therapeutic action of tranexamic acid in hereditary haemorrhagic telangiectasia (HHT), regulation of ALK- 1/Endoglin pathway in endothelial cells. Thromb Haemost 2007; 97: 254-262.
  • 20 Dupuis-Girod S, Ginon I, Saurin JC. et al. Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. J Am Med Assoc 2012; 307: 948-955.
  • 21 Faughnan ME, Palda VA, Garcia-Tsao G. et al. International guidelines for the diagnosis and management of hereditary haemorrhagic telangiectasia. J Med Genet 2011; 48: 73-87.
  • 22 Zarrabeitia R, Albiñana V, Salcedo M. et al. A review on clinical management and pharmacological therapy on hereditary haemorrhagic telangiectasia (HHT). Curr Vasc Pharmacol 2010; 08: 473-481.
  • 23 Miller PD, Chines AA, Christiansen C. et al. Effects of Bazedoxifene on BMD and bone turnover in postmenopausal women: 2-yr results of a randomized, double-blind, placebo-, and active-controlled study. J Bone Miner Res 2008; 23: 525-535.
  • 24 Pinkerton JV, Archer DF, Utian WH. et al. Bazedoxifene effects on the reproductive tract in postmenopausal women at risk for osteoporosis. Menopause 2009; 16: 1102-1108.
  • 25 Bergler W, Sadick H, Gotte K. et al. Topical estrogens combined with argon plasma coagulation in the management of epistaxis in hereditary hemorrhagic telangiectasia. Ann Otol Rhinol Laryngol 2002; 111: 222-228.
  • 26 Ades EW, Candal FJ, Swerlick RA. et al. HMEC-1, establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 1992; 09: 683-690.
  • 27 Fernandez-L A, Sanz-Rodriguez F, Zarrabeitia R. et al. Blood outgrowth endothelial cells from Hereditary Haemorrhagic Telangiectasia patients reveal abnormalities compatible with vascular lesions. Cardiovasc Res 2005; 68: 235-248.
  • 28 Lastres P, Bellon T, Cabañas C. et al. Regulated expression on human macrophages of Endoglin, an Arg-Gly-Asp-containing surface antigen. Eur J Immunol 1992; 22: 393-397.
  • 29 Sanz-Rodriguez F, Fernandez-L A, Zarrabeitia R. et al. Mutation analysis in Spanish patients with hereditary hemorrhagic telangiectasia, deficient Endoglin up-regulation in activated monocytes. Clin Chem 2004; 279: 2003-2011.
  • 30 Sadick H, Riedel F, Naim R. et al. Patients with hereditary hemorrhagic telangiectasia have increased plasma levels of vascular endothelial growth factor and transforming growth factor-beta1 as well as high ALK1 tissue expression. Haematologica 2005; 90: 818-828.
  • 31 Harvey JA, Holm MK, Ranganath R. et al. The effects of Bazedoxifene on mammographic breast density in postmenopausal women with osteoporosis. Menopause 2009; 16: 1193-1196.
  • 32 Chandrasekaran A, McKeand WE, Sullivan P. et al. Metabolic disposition of (14C)Bazedoxifene in healthy postmenopausal women. Drug Metab Dispos 2009; 37: 1219-1225.
  • 33 Shao ES, Lin L, Yao Y. et al. Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood 2009; 114: 2197-2206.
  • 34 Tual-Chalot S, Oh SP, Arthur HM. Mouse models of hereditary hemorrhagic telangiectasia: recent advances and future challenges. Front Genet 2015; 06: 25.
  • 35 Botella LM, Albiñana V, Ojeda-Fernandez L. et al. Research on potential biomarkers in hereditary hemorrhagic telangiectasia. Front Genet 2015; 06: 115.
  • 36 Fernandez-L A, Garrido-Martin EM, Sanz-Rodriguez F. et al. Gene expression fingerprinting for human hereditary hemorrhagic telangiectasia. Hum Mol Genet 2007; 16: 1515-1533.
  • 37 David L, Mallet C, Keramidas M. et al. Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res 2008; 102: 914-922.
  • 38 Tchaikovski SN, Rosing J. Mechanisms of estrogen-induced venous thromboembolism. Thromb Res 2010; 126: 5-11.