Thromb Haemost 2014; 112(05): 909-917
DOI: 10.1160/th14-03-0268
Theme Issue Article
Schattauer GmbH

Differential cellular effects of old and new oral anticoagulants: consequences to the genesis and progression of atherosclerosis

Leon J. Schurgers
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Henri M. H. Spronk
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
› Author Affiliations
Further Information

Publication History

Received: 25 March 2014

Accepted after major revision: 16 September 2014

Publication Date:
20 November 2017 (online)

Summary

The main purpose of anticoagulants is to diminish fibrin formation, thereby decreasing the risk of venous or arterial thrombosis. Vitamin K antagonist have been used for many decades in order to achieve reduced thrombotic risk, despite major drawbacks of this class of drugs such as cumbersome dossing and monitoring of anticoagulant status. To overcome these drawbacks of VKA, new classes of anticoagulants have been developed including oral anticoagulants for direct inhibition of either thrombin or factor Xa, which can be administrated in a fixed dose without monitoring. Coagulation factors can activate cellular protease-activated receptors, thereby inducing cellular processes as inflammation, apoptosis, migration, and fibrosis. Therefore, inhibition of coagulation proteases not only attenuates fibrin formation, but may also influence pathophysiological processes like vascular calcification and atherosclerosis. Animal models revealed that VKA therapy induced both intima and media calcification and accelerated plaque vulnerability, whereas specific and direct inhibition of thrombin or factor Xa attenuated atherosclerosis. In this review we provide an overview of old and new oral anticoagulants, as well discuss potential pleiotropic effects with regard to calcification and atherosclerosis. Although translation from animal model to clinical patients seems difficult at first sight, effort should be made to fully understand the clinical implications of long-term oral anticoagulant therapy on vascular side effects.

 
  • References

  • 1 Schofield FW. A brief account of a disease in cattle simulating hemorrhagic septicemia due to feeding sweet clover. Can Vet Rec 1922; 3: 74-79.
  • 2 Campbell M. Haemorrhagic disease in cattle. J Biol Chem 1941; 18: 21-33.
  • 3 Link K. The discovery of dicumarol and its sequels. Circulation 1959; 19: 97-107.
  • 4 Dam H. The antihemorrhagic vitamin of the chick: occurrence and chemical nature. Nature 1935; 135: 652-653.
  • 5 Stenflo J, Ferlund P, Egan W. et al. Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci USA 1974; 71: 2730-2733.
  • 6 Versteeg HH, Heemskerk JWM, Levi M. et al. New fundamentals in hemostasis. Physiol Rev 2013; 93: 327-358.
  • 7 Burnier J, Borowski M, Furie B. et al. Gamma-carboxyglutamic acid. Mol Cell Biochem 1981; 39: 191-207.
  • 8 Esmon C, Sadowski J, Suttie J. A new carboxylation reaction. The vitamin K-dependent incorporation of H-14-CO3- into prothrombin. J Biol Chem 1975; 250: 4744-4748.
  • 9 Matschiner JT, Bell RG, Amelotti JM. et al. Isolation and characterization of a new metabolite of phylloquinone in the rat. Biochim Biophys Acta 1970; 201: 309-315.
  • 10 Li T, Chang C, Jin D. et al. Identification of the gene for vitamin K epoxide reductase. Nature 2004; 427: 541-544.
  • 11 Rost S, Fregin A, Ivaskevicius V. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004; 427: 537-541.
  • 12 Shapiro SS. Treating thrombosis in the 21st century. N Engl J Med 2003; 349: 1762-1764.
  • 13 Levi M, Eerenberg ES, Kampuisen PW. Anticoagulants. Old and new. Hamostaseologie 2011; 31: 229-235.
  • 14 Mannucci PM, Levi M. Prevention and treatment of major blood loss. N Engl J Med 2007; 356: 2301-2311.
  • 15 Schulman S, Beyth RJ, Kearon C. et al. Hemorrhagic complications of anticoagulant and thrombolytic treatment: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008; pp. 257S-298S.
  • 16 Holmes MV, Hunt BJ, Shearer MJ. The role of dietary vitamin K in the management of oral vitamin K antagonists. Blood Rev 2012; 26: 1-14.
  • 17 Chatrou MLL, Winckers K, Hackeng TM. et al. Vascular calcification: the price to pay for anticoagulation therapy with vitamin K-antagonists. Blood Rev 2012; 26: 155-166.
  • 18 Schurgers LJ, Uitto J, Reutelingsperger CP. Vitamin K-dependent carboxylation of matrix Gla-protein: a crucial switch to control ectopic mineralization. Trends Mol Med 2013; 19: 217-226.
  • 19 Corral-Rodríguez MA, Macedo-Ribeiro S, Pereira PJB. et al. Leech-derived thrombin inhibitors: from structures to mechanisms to clinical applications. J Med Chem 2010; 53: 3847-3861.
  • 20 Markwardt F. Historical perspective of the development of thrombin inhibitors. Pathophysiol Haemost Thromb 2002; 32 (Suppl. 03) 15-22.
  • 21 Nutt EM, Jain D, Lenny AB. et al. Purification and characterization of recombinant antistasin: a leech-derived inhibitor of coagulation factor Xa. Arch Biochem Biophys 1991; 285: 37-44.
  • 22 Gage BF, Waterman AD, Shannon W. et al. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. J Am Med Assoc 2001; 285: 2864-2870.
  • 23 Wasmer K, Eckardt L. Management of atrial fibrillation around the world: a comparison of current ACCF/AHA/HRS, CCS, and ESC guidelines. Europace 2011; 13: 1368-1374.
  • 24 Granger CB, Alexander JH, McMurray JJV. et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011; 365: 981-992.
  • 25 Patel MR, Mahaffey KW, Garg J. et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011; 365: 883-891.
  • 26 Connolly SJ, Ezekowitz MD, Yusuf S. et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009; 361: 1139-1151.
  • 27 Fox KAA, Piccini JP, Wojdyla D. et al. Prevention of stroke and systemic embolism with rivaroxaban compared with warfarin in patients with non-valvular atrial fibrillation and moderate renal impairment. Eur Heart J 2011; 32: 2387-2394.
  • 28 Borissoff JI, Spronk HMH, Cate Ten H. The hemostatic system as a modulator of atherosclerosis. N Engl J Med 2011; 364: 1746-1760.
  • 29 Sevigny LM, Austin KM, Zhang P. et al. Protease-activated receptor-2 modulates protease-activated receptor-1-driven neointimal hyperplasia. Arterioscler Thromb Vasc Biol 2011; 31: e100-106.
  • 30 Shi X, Gangadharan B, Brass LF. et al. Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol Cancer Res 2004; 2: 395-402.
  • 31 Lin H, Trejo J. Transactivation of the PAR1-PAR2 heterodimer by thrombin elicits β-arrestin-mediated endosomal signalling. J Biol Chem 2013; 288: 11203-11215.
  • 32 Arachiche A, Mumaw MM, la Fuente de M. et al. Protease-activated receptor 1 (PAR1) and PAR4 heterodimers are required for PAR1-enhanced cleavage of PAR4 by α-thrombin. J Biol Chem 2013; 288: 32553-32562.
  • 33 Borensztajn K, Spek CA. Blood coagulation factor Xa as an emerging drug target. Expert Opin Ther Targets 2011; 15: 341-349.
  • 34 Borensztajn K, Peppelenbosch MP, Spek CA. Factor Xa: at the crossroads between coagulation and signalling in physiology and disease. Trends Mol Med 2008; 14: 429-440.
  • 35 Zhou Q, Bea F, Preusch M. et al. Evaluation of plaque stability of advanced atherosclerotic lesions in apo E-deficient mice after treatment with the oral factor Xa inhibitor rivaroxaban. Mediators Inflamm 2011; 2011: 432080.
  • 36 Kalz J, Cate Ten H, Spronk HMH. Thrombin generation and atherosclerosis. J Thromb Thrombolysis 2014; 37: 45-55.
  • 37 Hamilton JR, Cornelissen I, Mountford JK. et al. Atherosclerosis proceeds independently of thrombin-induced platelet activation in ApoE-/- mice. Atherosclerosis 2009; 205: 427-432.
  • 38 Patterson C, Stouffer GA, Madamanchi N. et al. New tricks for old dogs: nonthrombotic effects of thrombin in vessel wall biology. Circ Res 2001; 88: 987-997.
  • 39 Wilcox JN, Noguchi S, Casanova J. Extrahepatic synthesis of factor VII in human atherosclerotic vessels. Arterioscler Thromb Vasc Biol 2003; 23: 136-141.
  • 40 Wilcox JN, Smith KM, Schwartz SM. et al. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 1989; 86: 2839-2843.
  • 41 Borissoff JI, Heeneman S, Kilinç E. et al. Early atherosclerosis exhibits an enhanced procoagulant state. Circulation 2010; 122: 821-830.
  • 42 Borissoff JI, Otten JJT, Heeneman S. et al. Genetic and Pharmacological Modifications of Thrombin Formation in Apolipoprotein E-deficient Mice Determine Atherosclerosis Severity and Atherothrombosis Onset in a Neutrophil-Dependent Manner. PLoS one 2013; 8: e55784.
  • 43 Khallou-Laschet J, Caligiuri G, Tupin E. et al. Role of the intrinsic coagulation pathway in atherogenesis assessed in hemophilic apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2005; 25: e123-126.
  • 44 Vicente CP, He L, Tollefsen DM. Accelerated atherogenesis and neointima formation in heparin cofactor II deficient mice. Blood 2007; 110: 4261-4267.
  • 45 Westrick RJ, Bodary PF, Xu Z. et al. Deficiency of tissue factor pathway inhibitor promotes atherosclerosis and thrombosis in mice. Circulation 2001; 103: 3044-3046.
  • 46 Tilley RE, Pedersen B, Pawlinski R. et al. Atherosclerosis in mice is not affected by a reduction in tissue factor expression. Arterioscler Thromb Vasc Biol 2006; 26: 555-562.
  • 47 Loeffen R, Spronk HMH, Cate ten H.. The impact of blood coagulability on atherosclerosis and cardiovascular disease. J Thromb Haemost 2012; 10: 1207-1216.
  • 48 de Moerloose P, Boehlen F. Inherited thrombophilia in arterial disease: a selective review. Semin Hematol 2007; 44: 106-113.
  • 49 Houbballah R, LaMuraglia GM. Clotting problems: diagnosis and management of underlying coagulopathies. Semin Vasc Surg 2010; 23: 221-227.
  • 50 Foley CJ, Nichols L, Jeong K. et al. Coronary atherosclerosis and cardiovascular mortality in hemophilia. J Thromb Haemost 2010; 8: 208-211.
  • 51 Tuinenburg A, Rutten A, Kavousi M. et al. Coronary artery calcification in hemophilia A: no evidence for a protective effect of factor VIII deficiency on atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32: 799-804.
  • 52 Zwiers M, Lefrandt JD, Mulder DJ. et al. Coronary artery calcification score and carotid intima-media thickness in patients with hemophilia. J Thromb Hae-most 2012; 10: 23-29.
  • 53 Bilora F, Zanon E, Petrobelli F. et al. Does hemophilia protect against atherosclerosis? A case-control study. Clin Appl Thromb Hemost 2006; 12: 193-198.
  • 54 Srámek A, Reiber JH, Gerrits WB. et al. Decreased coagulability has no clinically relevant effect on atherogenesis: observations in individuals with a hereditary bleeding tendency. Circulation 2001; 104: 762-767.
  • 55 Narins CR, Zaręba W, Moss AJ. et al. Relationship between intermittent claudication, inflammation, thrombosis, and recurrent cardiac events among survivors of myocardial infarction. Arch Intern Med 2004; 164: 440-446.
  • 56 Lowe GDO, Sweetnam PM, Yarnell JWG. et al. C-reactive protein, fibrin D-dimer, and risk of ischemic heart disease: the Caerphilly and Speedwell studies. Arterioscler Thromb Vasc Biol 2004; 24: 1957-1962.
  • 57 Salomaa V, Stinson V, Kark JD. et al. Association of fibrinolytic parameters with early atherosclerosis. The ARIC Study. Atherosclerosis Risk in Communities Study. Circulation 1995; 91: 284-290.
  • 58 Smith FB, Rumley A, Lee AJ. et al. Haemostatic factors and prediction of ischaemic heart disease and stroke in claudicants. Br J Haematol 1998; 100: 758-763.
  • 59 Tataru MC, Heinrich J, Junker R. et al. D-dimers in relation to the severity of arteriosclerosis in patients with stable angina pectoris after myocardial infarction. Eur Heart J 1999; 20: 1493-1502.
  • 60 Páramo JA, Orbe J, Beloqui O. et al. Prothrombin fragment 1+2 is associated with carotid intima-media thickness in subjects free of clinical cardiovascular disease. Stroke 2004; 35: 1085-1089.
  • 61 Kienast J, Thompson SG, Raskino C. et al. Prothrombin activation fragment 1 + 2 and thrombin antithrombin III complexes in patients with angina pectoris: relation to the presence and severity of coronary atherosclerosis. Thromb Hae-most 1993; 70: 550-553.
  • 62 Henareh L, Jogestrand T, Agewall S. Prothrombin fragment 1 + 2 is associated with intima media thickness of the carotid artery in patients with myocardial infarction. Thromb Res 2009; 124: 526-530.
  • 63 Di Tullio MR, Homma S, Jin Z. et al. Aortic atherosclerosis, hypercoagulability, and stroke the APRIS (Aortic Plaque and Risk of Ischemic Stroke) study. J Am Coll Cardiol 2008; 52: 855-861.
  • 64 Borissoff JI, Joosen IA, Versteylen MO. et al. Accelerated In Vivo Thrombin Formation Independently Predicts the Presence and Severity of CT Angio-graphic Coronary Atherosclerosis. JACC Cardiovasc Imaging 2012; 5: 1201-1210.
  • 65 Price P, Faus S, Williamson M. Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves. Arterioscler Thromb Vasc Biol 1998; 18: 1400-1407.
  • 66 Schurgers LJ, Joosen IA, Laufer EM. et al. Vitamin k-antagonists accelerate atherosclerotic calcification and induce a vulnerable plaque phenotype. PLoS one 2012; 7: e43229.
  • 67 Krüger T, Oelenberg S, Kaesler N. et al. Warfarin induces cardiovascular damage in mice. Arterioscler Thromb Vasc Biol 2013; 33: 2618-2624.
  • 68 Schurgers LJ, Aebert H, Vermeer C. et al. Oral anticoagulant treatment: friend or foe in cardiovascular disease?. Blood 2004; 104: 3231-3232.
  • 69 Weijs B, Blaauw Y, Rennenberg RJMW. et al. Patients using vitamin K antagonists show increased levels of coronary calcification: an observational study in low-risk atrial fibrillation patients. Eur Heart J 2011; 32: 2555-2562.
  • 70 Shanahan CM, Crouthamel MH, Kapustin A. et al. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res 2011; 109: 697-711.
  • 71 Nadra I, Mason J, Philippidis P. et al. Proinflammatory Activation of Macrophages by Basic Calcium Phosphate Crystals via Protein Kinase C and MAP Kinase Pathways: A Vicious Cycle of Inflammation and Arterial Calcification?. Circ Res 2005; 96: 1248-1256.
  • 72 Tintut Y, Patel J, Parhami F. et al. Tumor necrosis factor-alpha promotes In vitro calcification of vascular cells via the cAMP pathway. Circulation 2000; 102: 2636-2642.
  • 73 Pazár B, Ea H-K, Narayan S. et al. Basic Calcium Phosphate Crystals Induce Monocyte/Macrophage IL-1{beta} Secretion through the NLRP3 Inflammasome In Vitro. J Immunol 2011; 186: 2495-2502.
  • 74 Ewence AE, Bootman M, Roderick HL. et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ Res 2008; 103: e28-34.
  • 75 Kapustin AN, Davies JD, Reynolds JL. et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res 2011; 109: e1-12.
  • 76 Van Der Meijden PEJ, Van Schilfgaarde M, van Oerle R. et al. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost 2012; 10: 1355-1362.
  • 77 Olsson SB. Executive Steering Committee of the SPORTIF III Investigators. Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): randomised controlled trial. Lancet 2003; 362: 1691-1698.
  • 78 Christersson C, Oldgren J, Wallentin L. et al. Treatment with an oral direct thrombin inhibitor decreases platelet activity but increases markers of inflammation in patients with myocardial infarction. J Intern Med 2011; 270: 215-223.
  • 79 Bea F, Kreuzer J, Preusch M. et al. Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2006; 26: 2787-2792.
  • 80 Lee I-O, Kratz MT, Schirmer SH. et al. The effects of direct thrombin inhibition with dabigatran on plaque formation and endothelial function in apolipoprotein E-deficient mice. J Pharmacol Exp Ther 2012; 343: 253-257.
  • 81 Ragosta M, Gimple LW, Gertz SD. et al. Specific factor Xa inhibition reduces restenosis after balloon angioplasty of atherosclerotic femoral arteries in rabbits. Circulation 1994; 89: 1262-1271.
  • 82 Liska DJ, Suttie JW. Location of gamma-carboxyglutamyl residues in partially carboxylated prothrombin preparations. Biochemistry 1988; 27: 8636-8641.
  • 83 Bae J-S, Yang L, Rezaie AR. Factor X/Xa elicits protective signalling responses in endothelial cells directly via PAR-2 and indirectly via endothelial protein C receptor-dependent recruitment of PAR-1. J Biol Chem 2010; 285: 34803-34812.
  • 84 Spronk HMH, de Jong AM, Crijns HJ. et al. Pleiotropic effects of factor Xa and thrombin: what to expect from novel anticoagulants. Cardiovasc Res 2014; 101: 344-351.