Phlebologie 2013; 42(03): 121-129
DOI: 10.12687/phleb2134-3-2013
Originalarbeit
Schattauer GmbH

Endovenous Laser Application

Strategies to improve endoluminal energy applicationEndovenöse LasertherapieStrategien zur Verbesserung endoluminaler Energieapplikation
R. Sroka
1   Laser-Forschungslabor, LIFE-Centre, Univ. Hospital of Munich, Germany
,
T. Pongratz
1   Laser-Forschungslabor, LIFE-Centre, Univ. Hospital of Munich, Germany
,
K. Siegrist
1   Laser-Forschungslabor, LIFE-Centre, Univ. Hospital of Munich, Germany
,
C. Burgmeier
1   Laser-Forschungslabor, LIFE-Centre, Univ. Hospital of Munich, Germany
,
H.-D. Barth
2   Inst. für Physikalische und Theoretische Chemie, Johann Wolfgang-Goethe Universität, Frankfurt, Germany
,
C.-G. Schmedt
3   Diakonie-Klinikum Schwäbisch Hall gGmbH, Germany
› Author Affiliations
Further Information

Publication History

Received: 22 February 2013

Accepted: 15 April 2013

Publication Date:
04 January 2018 (online)

Summary

Introduction: Endoluminal vein treatment is a promising minimal invasive treatment option for peoples suffering from varicose veins. The basic mechanism underlying this procedure is to selectively induce heat in the vessel wall with the result of denaturation of proteins and shrinkage of collagen fibers due to energy application. So far energy could be applied either as RF-current, laser light or water steam. The different approaches to deliver such forms of energies are described.

Methods: Investigations on heat dependent vein tissue effects were performed. The degree of shrinkage and wall thickening due to heat induction was calculated. Tensile test on vein tissue were performed. Investigation using the radial emitting laser fibre in the ox-foot-model under reproducible condition were done and wavelengths dependent tissue reaction were explored.

Results: The experiments clearly demonstrate the degree of the shrinkage of length and diameter, the thickening of the vein wall, as well as the decrease of the elasticity of the tissue. The optical irradiation pattern of the radial emitting laser fiber serves for safe and reproducible energy application directly to the vein wall. Using a laser wavelength with high absorption by the tissue water needs reduced irradiation and irradiance compared to wavelengths with less water absorption. Conclusion: An experimental approach to improve laser application for endovenous varicose treatment is described. Laser parameters and treatment parameters were found which are now under clinical testing. The demonstrated tissue effects may help to find further arguments for clinical findings and sensations described by the patients during follow-up.

Zusammenfassung

Einleitung: Endoluminale Behandlungsstrategien sind vielversprechende minimal invasive Behandlungsoptionen für Varikosis–Patienten. Der zugrunde liegende Mechanismus dieser Behandlungsform basiert auf die selektive thermische Zerstörung der Gefäßwand durch Denaturierung von Proteinen und Kollagenschrumpfung. Die Energiezufuhr kann heutzutage mittels RF-Strom, Laserlicht oder Wasserdampf erfolgen. Die unterschiedlichen Applikationsformen werden beschrieben.

Methode: Es wurden Untersuchungen zu temperaturabhängigen Effekten auf Venengewebe durchgeführt. Der Grad der Gewebeveränderung in Form von Schrumpfung und Verdickung wurde ermittelt. Ferner wurden Elastizitätstest vorgenommen. Schließlich wurden unter reproduzierbaren Bedingungen im Rinderfuß-Modell Untersuchungen mittels radial abstrahlenden Lichtwellenleitern zur Wellenlängenabhängigkeit des Gewebeeffektes durchgeführt.

Ergebnisse: Aus diesen Experimenten geht deutlich der Grad der Schrumpfung von Venenlänge und Venendurchmesser, die Verdi-ckung der Venenwand, sowie die Abnahme der Elastizität hervor. Die radiale Abstrahlcharakteristik der neuartigen Laserenergieemitter ermöglicht eine sichere und reproduzierbare Energieapplikation auf die Venen-wand. Bei Nutzung einer Laser-Wellenlänge mit hoher Absorption durch Gewebewasser kann mit einer geringeren Bestrahlung behandelt werden im Vergleich zu einer Wellenlänge, die gering absorbiert wird.

Schlussfolgerung: Zusammenfassend werden Experimente beschrieben, mit welchen die Laserlicht-Applikation für die Behandlung der Varikosis optimiert wurden. Es wurden Laser-Parameter ermittelt und Behandlungsverfahren getestet, welche nun unter klinischen Bedingungen überprüft werden. Die experimentell verifizierten Gewebeeffekte spiegeln Beschreibungen von Nebeneffekten wieder und können nun in die klinische Argumentation integriert werden.

 
  • Reference

  • 1 Navarro L, Min RJ, Boné C. Endovenous laser: a new minimally invasive method of treatment for varicose veins. Dermatol Surg 2001; 27: 117-122.
  • 2 Min RJ. et al. Endovenous laser treatment of the incompetent greater saphenous vein. J Vasc Interv Radiol 2001; 12: 1167-1171.
  • 3 Goldman MP. Closure of the greater saphenous vein with endoluminal radiofrequency thermal heating of the vein wall in combination with ambulatory phlebectomy: preliminary 6-month follow-up. Dermatol Surg 2000; 26: 452-456.
  • 4 Rass K. et al. Comparable effectiveness of endovenous laser ablation and high ligation with stripping of the great saphenous vein: two-year results of a randomized clinical trial (RELACS study). Arch Dermatol 2012; 148: 49-58.
  • 5 Tesmann JP. et al. Radiofrequency induced thermotherapy (RFITT) of varicose veins compared to endovenous laser treatment (EVLT). Eur J Dermatol 2011; 21: 945-951.
  • 6 Rasmussen LH. et al. Randomized clinical trial comparing endovenous laser ablation, radiofrequency ablation, foam sclerotherapy and surgical stripping for great saphenous varicose veins. Br J Surg 2011; 98: 1079-1087.
  • 7 Disselhoff BC. et al. Five-year results of a randomized clinical trial comparing endovenous laser ablation with cryostripping for great saphenous varicose veins. Br J Surg 2011; 98: 1107-1111.
  • 8 Disselhoff BC. et al. Five-year results of a randomised clinical trial of endovenous laser ablation of the great saphenous vein with and without ligation of the saphenofemoral junction. Eur J Vasc Endovasc Surg 2011; 41: 685-690.
  • 9 Luebke T, Brunkwall J. Systematic review and meta-analysis of endovenous radiofrequency obliteration, endovenous laser therapy, and foam sclerotherapy for primary varicosis. J Cardiovasc Surg (Torino) 2008; 49: 213-233.
  • 10 Luebke T. et al. Meta-analysis of endovenous radiofrequency obliteration of the great saphenous vein in primary varicosis. J Endovasc Ther 2008; 15: 213-223.
  • 11 Proebstle T. et al. Konsensus zur endovenösen Lasertherapie der Varikose. Phlebologie 2004; 33: 106-109.
  • 12 van den Bos RR. et al. Proof-of-principle study of steam ablation as novel thermal therapy for saphenous varicose veins. J Vasc Surg 2011; 53: 181-186.
  • 13 Chandler JG, Pichot O, Sessa C. et al. Treatment of primary venous insufficiency by endovenous vein obliteration. J Vasc Surg 2000; 34: 201-204.
  • 14 Milleret R. Thermal ablation of varicose vein by hyperheated steam. In: Becquemin JP, Alimi YS, Gerard JL. Controversies and Updates in vascular surgery. Edizioni Minerva Medica (Torino) 2009: 432-435.
  • 15 van den Bos RR, Milleret R, Neumann M, Nijsten T. Proof-of-principle study of steam ablation as novel thermal therapy for saphenous varicose veins. J Vasc Surg 2011; 53: 181-186.
  • 16 Manfrini S. et al. Endovenous management of saphenous vein reflux. J Vasc Surg 2000; 32: 330-342.
  • 17 Calcagno D. et al. Effect of saphenous vein diameter on closure rate with ClosureFAST radiofrequency catheter. Vasc Endovasc Surg 2009; 43: 567-570.
  • 18 Proebstle TM. et al. Three-year European follow-up of endovenous radiofrequency-powered segmental thermal ablation of the great saphenous vein with or without treatment of calf varicosities. J Vasc Surg 2011; 54: 146-152.
  • 19 Goode SD, Chowdhury A, Crockett M. et al. Laser and radiofrequency ablation study (LARA study). Eur J Vasc Endovasc Surg 2010; 40: 246-253.
  • 20 Muschter R. Conductive heat: hot water-induced thermotherapy for ablation of prostatic tissue. J Endourol 2003; 17: 609-616.
  • 21 Cioanta I, Muschter R. Water-induced thermotherapy for benign prostatic hyperplasia. Tech Urol 2000; 6: 294-299.
  • 22 Hartmann K. Interventionelle Therapie der Varikosis mit hocherhitztem Dampf. Phlebologie 2011; 1: 31-32.
  • 23 van den Bos RR, Milleret R, Neumann M, Nijsten T. Proof-of-principle study of steam ablation as novel thermal therapy for saphenous varicose veins. J Vasc Surg 2011; 53: 181-186.
  • 24 Proebstle TM. et al. Endovenous treatment of the great saphenous vein using a 1,320 nm Nd:YAG laser causes fewer side effects than using a 940 nm diode laser. Dermatol Surg 2005; 31: 1678-1683.
  • 25 van Ruijven PWM. et al. Temperature measurements for dose-finding in steam ablation. J Vasc Surg 2011; 53: 1454-1456.
  • 26 Fan CM, Rox-Anderson R. Endovenous laser ablation: mechanism of action. Phlebology 2008; 23: 206-213.
  • 27 Vuylsteke ME, Mordon SR. Endovenous laser ablation: a review of mechanisms of action. Ann Vasc Surg 2012; 26: 424-433.
  • 28 van Gemert MJ. et al. Comment to Vuylsteke ME and Mordon SR. Endovenous laser ablation: a review of mechanisms of action. Ann Vasc Surg 2012; 26: 424-433. and 881-883
  • 29 Proebstle TM, Lehr HA, Kargl A. et al. Endovenous treatment of the greater saphenous vein with a 940-nm diode laser: thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. J Vasc Surg 2002; 35: 729-736.
  • 30 Proebstle TM. et al. Thermal damage of the inner vein wall during endovenous laser treatment: key role of energy absorption by intravascular blood. Dermatol Surg 2002; 28: 596-600.
  • 31 Sroka R. et al. The ox-foot-model for investigating endoluminal thermal treatment modalities of varicosis vein diseases. ALTEX 2012; 29: 403-410.
  • 32 Sroka R. et al. Ex-vivo investigation of endoluminal vein treatment by means of radiofrequency and laser irradiation. Med Laser Appl 2006; 21: 15-22.
  • 33 Schmedt CG. et al. Evaluation of endovenous radiofrequency ablation and laser therapy with endoluminal optical coherence tomography in an ex vivo model. J Vasc Surg 2007; 45: 1047-1058.
  • 34 Mordon SR. et al. Mathematical modeling of 980-nm and 1320-nm endovenous laser treatment. Lasers Surg Med 2007; 39: 256-265.
  • 35 Mordon SR, Wassmer B, Zemmouri J. Mathematical modeling of endovenous laser treatment (ELT). Biomed Eng Online 2006; 5: 26
  • 36 Beck TJ. et al. Thermal-induced effects on vein tissue – A basic ex-vivo investigation for EVLT. Med Laser Appl 2008; 22: 238-241.
  • 37 Sroka R. et al. Interstitial laser coagulation of the proastate – an in-vivo study to compare the laser induced necrosis after irradiation with different wavelength. Lasermedizin 1997; 13: 75-78.
  • 38 Baumgartner R, Hofstetter A, Muschter R. et al. Tissue laser ablation device. PCT/EP1998/00 0335, WO 1998/03 2381
  • 39 Sroka R. et al. Endovenous laser therapy-application studies and latest investigations. J Biophotonics 2010; 3: 269-276.
  • 40 van der Geld CW. et al. The heat-pipe resembling action of boiling bubbles in endovenous laser ablation. Lasers Med Sci 2010; 25: 907-909.
  • 41 Amzayyb M. et al. Carbonized blood deposited on fibres during 810, 940 and 1,470 nm endovenous laser ablation. Lasers Med Sci 2010; 25: 439-447.
  • 42 Roggan A. et al. Optical properties of circulating human blood in the wavelength range 400-2,500 nm. J Biomed Opt 1999; 4: 36-46.
  • 43 van den Bos RR. et al. Endovenous simulated laser experiments at 940 nm and 1470 nm suggest wavelength-independent temperature profiles. Eur J Vasc Endovasc Surg 2012; 44: 77-81.
  • 44 Pannier F. et al. First results with a new 1470-nm diode laser for endovenous ablation of incompetent saphenous veins. Phlebology 2009; 24: 26-30.
  • 45 Maurins U. et al. Does laser power influence the results of endovenous laser ablation (EVLA) of incompetent saphenous veins with the 1 470-nm diode laser?. Int Angiol 2009; 28: 32-37.
  • 46 Pannier F, Rabe E, Maurins U. 1470 nm diode laser for endovenous ablation (EVLA) of incompetent saphenous veins – a prospective randomized pilot study comparing warm and cold tumescence anaesthesia. Vasa 2010; 39: 249-255.
  • 47 Pannier F. et al. Endovenous laser ablation of great saphenous veins using a 1470 nm diode laser and the radial fibre. Phlebology 2011; 26: 35-39.
  • 48 Gorisch W, Boergen KP. Heat-induced contraction of blood vessels. Lasers Surg Med 1982; 2: 1-13.
  • 49 Vangsness CT, Mitchell W, Nimni M, Erlich M, Saadat V, Schmotzer H. Collagen shortening, an experimental approach with heat. Clin Orthop 1997; 337: 267-271.
  • 50 Chen SS. et al. Heat-induced changes in the mechanics of a collagenous tissue: isothermal, isotonic shrinkage. J Biomech Eng 1998; 120: 382-388.
  • 51 Theivacumar NS. et al. Factors influencing the effectiveness of endovenous laser ablation (EVLA) in the treatment of great saphenous vein reflux. Eur J Vasc Endovasc Surg 2008; 35: 119-123.
  • 52 Tarhan IA. et al. Local cooling effect on perforation rates comparing the 980-1470. nm laser wavelengths used with endovenous laser ablation: double blind in vitro experimental study. Phlebology 2012. (Epub ahead of print)