CC BY 4.0 · Aorta (Stamford) 2013; 01(03): 171-181
DOI: 10.12945/j.aorta.2013.13-003
State-of-the-Art Review
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Contemporary Role of Computational Analysis in Endovascular Treatment for Thoracic Aortic Disease

Guido H.W. van Bogerijen
1   Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Milan, Italy
,
Jip L. Tolenaar
1   Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Milan, Italy
,
Michele Conti
2   Department of Civil Engineering and Architecture, Structural Mechanics Division, University of Pavia, Pavia, Italy
,
Ferdinando Auricchio
2   Department of Civil Engineering and Architecture, Structural Mechanics Division, University of Pavia, Pavia, Italy
,
Francesco Secchi
3   Department of Radiology, Policlinico San Donato IRCCS, University of Milan, Milan, Italy
,
Francesco Sardanelli
3   Department of Radiology, Policlinico San Donato IRCCS, University of Milan, Milan, Italy
,
Frans L. Moll
4   Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
,
Joost A. van Herwaarden
4   Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
,
Vincenzo Rampoldi
1   Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Milan, Italy
,
Santi Trimarchi
1   Thoracic Aortic Research Center, Policlinico San Donato IRCCS, University of Milan, Milan, Italy
› Institutsangaben
Weitere Informationen

Publikationsverlauf

14. Januar 2013

12. Juli 2013

Publikationsdatum:
28. September 2018 (online)

Abstract

In the past decade, thoracic endovascular aortic repair (TEVAR) has become the primary treatment option in descending aneurysm and dissection. The clinical outcome of this minimally invasive technique is strictly related to an appropriate patient/stent graft selection, hemodynamic interactions, and operator skills. In this context, a quantitative assessment of the biomechanical stress induced in the aortic wall due to the stent graft may support the planning of the procedure. Different techniques of medical imaging, like computed tomography or magnetic resonance imaging, can be used to evaluate dynamics in the thoracic aorta. Such information can also be combined with dedicated patient-specific computer-based simulations, to provide a further insight into the biomechanical aspects. In clinical practice, computational analysis might show the development of aortic disease, such as the aortic wall segments which experience higher stress in places where rupture and dissection may occur. In aortic dissections, the intimal tear is usually located at the level of the sino-tubular junction and/or at the origin of the left subclavian artery. Besides, computational models may potentially be used preoperatively to predict stent graft behavior, virtually testing the optimal stent graft sizing, deployment, and conformability, in order to provide the best endovascular treatment. The present study reviews the current literature regarding the use of computational tools for TEVAR biomechanics, highlighting their potential clinical applications.

 
  • References

  • 1 Grabenwöger M, Alfonso F, Bachet J, Bonser R, Czerny M, Eggebrecht H. , et al. Thoracic Endovascular Aortic Repair (TEVAR) for the treatment of aortic diseases: a position statement from the European Association for Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2012; 33: 1558-1563 . 10.1093/eurheartj/ehs074
  • 2 Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey Jr DE. , et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke. Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. J Am Coll Cardiol 2010; 55: e27-e129 . 10.1016/j.jacc.2010.02.015
  • 3 Muhs BE, Vincken KL, van Prehn J, Stone MK, Bartels LW, Prokop M. , et al. Dynamic cine-CT angiography for the evaluation of the thoracic aorta; insight in dynamic changes with implications for thoracic endograft treatment. Eur J Vasc Endovasc Surg 2006; 32: 532-536 . 10.1016/j.ejvs.2006.05.009
  • 4 van Keulen JW, van Prehn J, Prokop M, Moll FL, van Herwaarden JA. Dynamics of the aorta before and after endovascular aneurysm repair: a systematic review. Eur J Vasc Endovasc Surg 2009; 38: 586-596 . 10.1016/j.ejvs.2009.06.018
  • 5 van Prehn J, Vincken KL, Muhs BE, Barwegen GK, Bartels LW, Prokop M. , et al. Toward endografting of the ascending aorta: insight into dynamics using dynamic cine-CTA. J Endovasc Ther 2007; 14: 551-560 . 10.1583/1545-1550(2007)14[551:TEOTAA]2.0.CO;2
  • 6 van Prehn J, Vincken KL, Sprinkhuizen SM, Viergever MA, van Keulen JW, van Herwaarden JA. , et al. Aortic pulsatile distention in young healthy volunteers is asymmetric: analysis with ECG-gated MRI. Eur J Vasc Endovasc Surg 2009; 37: 168-174 . 10.1016/j.ejvs.2008.11.007
  • 7 van Prehn J, Bartels LW, Mestres G, Vincken KL, Prokop M, Verhagen HJ. , et al. Dynamic aortic changes in patients with thoracic aortic aneurysms evaluated with electrocardiography-triggered computed tomographic angiography before and after thoracic endovascular aneurysm repair: preliminary results. Ann Vasc Surg 2009; 23: 291-297 . 10.1016/j.avsg.2008.08.007
  • 8 Lin KK, Kratzberg JA, Raghavan ML. Role of aortic stent graft oversizing and barb characteristics on folding. J Vasc Surg 2012; 55: 1401-1409 . 10.1016/j.jvs.2011.10.080
  • 9 Figueroa CA, Taylor CA, Chiou AJ, Yeh V, Zarins CK. Magnitude and direction of pulsatile displacement forces acting on thoracic aortic endografts. J Endovasc Ther 2009; 16: 350-358 . 10.1583/09-2738.1
  • 10 Figueroa CA, Zarins CK. Computational analysis of displacement forces acting on endografts used to treat aortic aneurysms. In Biomechanics and Mechanobiology of Aneurysms. McGloughlin T. , ed. XIV. Springer; 2011: 221-246
  • 11 Hsiao EM, Rybicki FJ, Steigner M. CT coronary angiography: 256-slice and 320-detector row scanners. Curr Cardiol Rep 2010; 12: 68-75 . 10.1007/s11886-009-0075-z
  • 12 Sabarudin A, Sun Z, Yusof AK. Coronary CT angiography with single-source and dual-source CT: comparison of image quality and radiation dose between prospective ECG-triggered and retrospective ECG-gated protocols. Int J Cardiol. 2012 Oct. 22. 10.1016/j.ijcard.2012.09.217
  • 13 Willemink MJ, Habets J, de Jong PA, Schilham AM, Mali WP, Leiner T. , et al. Iterative reconstruction improves evaluation of native aortic and mitral valves by retrospectively ECG-gated thoracoabdominal CTA. Eur Radiol 2013; 4: 968-974 . 10.1007/s00330-012-2673-1
  • 14 Ko JP, Brandman S, Stember J, Naidich DP. Dual-energy computed tomography: concepts, performance, and thoracic applications. J Thorac Imaging 2012; 27: 7-22 . 10.1097/RTI.0b013e31823fe0e9
  • 15 Frydrychowicz A, Berger A, Munoz Del Rio A, Russe MF, Bock J, Harloff A. , et al. Interdependencies of aortic arch secondary flow patterns, geometry, and age analysed by 4-dimensional phase contrast magnetic resonance imaging at 3 Tesla. Eur Radiol 2012; 22: 1122-1130 . 10.1007/s00330-011-2353-6
  • 16 Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI. J Magn Reson Imaging 2012; 36: 1015-1036 . 10.1002/jmri.23632
  • 17 Taylor CA, Figueroa CA. Patient-specific modeling of cardiovascular mechanics. Annu Rev Biomed Eng 2009; 11: 109-134 . 10.1146/annurev.bioeng.10.061807.160521
  • 18 Midulla M, Moreno R, Baali A, Chau M, Negre-Salvayre A, Nicoud F. , et al. Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (CFD): presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations. Eur Radiol 2012; 22: 2094-2102 . 10.1007/s00330-012-2465-7
  • 19 De Santis G, De Beule M, Van Canneyt K, Verdonck P, Verhegghe B. Full-hexahedral structured meshing for image-based computational vascular modeling. Med Eng Phys 2011; 10: 1318-1325 . 10.1016/j.medengphy.2011.06.007
  • 20 Auricchio F, Di Loreto M, Sacco E. Finite element analysis of a stenotic artery revascularization through stent insertion. Computer Methods in Biomechanics and Biomedical Engineering 2001; 4: 249-263 . 10.1080/10255840108908007
  • 21 Auricchio F, Conti M, De Beule M, De Santis G, Verhegghe B. Carotid artery stenting simulation: from patient-specific images to finite element analysis. Med Eng Phys 2011; 33: 281-289 . 10.1016/j.medengphy.2010.10.011
  • 22 Conti M, Van Loo D, Auricchio F, De Beule M, De Santis G, Verhegghe B. , et al. Impact of carotid stent cell design on vessel scaffolding: a case study comparing experimental investigation and numerical simulations. J Endovasc Ther 2011; 18: 397-406 . 10.1583/10-3338.1
  • 23 Gijsen FJ, Migliavacca F, Schievano S, Socci L, Petrini L, Thury A. , et al. Simulation of stent deployment in a realistic human coronary artery. Biomed Eng Online 2008; 7: 23 . 10.1186/1475-925X-7-23
  • 24 Lally C, Dolan F, Prendergast PJ. Cardiovascular stent design and vessel stresses: a finite element analysis. J Biomech 2005; 38: 1574-1581 . 10.1016/j.jbiomech.2004.07.022
  • 25 Mortier P, Holzapfel GA, De Beule M, Van Loo D, Taeymans Y, Segers P. , et al. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann Biomed Eng 2010; 38: 88-99 . 10.1007/s10439-009-9836-5
  • 26 Auricchio F, Conti M, Marconi S, Reali A, Tolenaar JL, Trimarchi S. Patient-specific aortic endografting simulation: from diagnosis to prediction. Comput Biol Med 2013; 43: 386-394 . 10.1016/j.compbiomed.2013.01.006
  • 27 De Bock S, Iannaccone F, De Santis G, De Beule M, Van Loo D, Devos D. , et al. Virtual evaluation of stent graft deployment: a validated modeling and simulation study. J Mech Behav Biomed Mater 2012; 13: 129-139 . 10.1016/j.jmbbm.2012.04.021
  • 28 Alastruè V, Garcia A, Pena E, Rodriguez J, Martinez M, Doblare M. Numerical framework for patient-specific computational modelling of vascular tissue. Int J Numerical Methods Biomed Eng 2010; 26: 35-51 . 10.1002/cnm.1234
  • 29 Gee M, Förster C, Wall W. A computational strategy for prestressing patient-specific biomechanical problems under finite deformations. Int J Numerical Methods Biomed Eng 2010; 26: 52-72 . 10.1002/cnm.1236
  • 30 Holzapfel GA, Gasser T, Ogden R. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity 2000; 61: 1-48 . 10.1023/A:1010835316564
  • 31 Tierney ÁP, Callanan A, McGloughlin TM. Use of regional mechanical properties of abdominal aortic aneurysms to advance finite element modeling of rupture risk. J Endovasc Ther 2012; 1: 100-114 . 10.1583/11-3456.1
  • 32 Fung GS, Lam SK, Cheng SW, Chow KW. On stent-graft models in thoracic aortic endovascular repair: a computational investigation of the hemodynamic factors. Comput Biol Med 2008; 38: 484-489 . 10.1016/j.compbiomed.2008.01.012
  • 33 Gallo D, De Santis G, Negri F, Tresoldi D, Ponzini R, Massai D. , et al. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow. Ann Biomed Eng 2012; 40: 729-741 . 10.1007/s10439-011-0431-1
  • 34 Lam SK, Fung GS, Cheng SW, Chow KW. A computational investigation on the effect of biomechanical factors related to stent-graft models in the thoracic aorta. Conf Proc IEEE Eng Med Biol Soc 2007; 943-946 . 10.1007/s11517-008-0361-8
  • 35 Lam SK, Fung GS, Cheng SW, Chow KW. A computational study on the biomechanical factors related to stent-graft models in the thoracic aorta. Med Biol Eng Comput 2008; 46: 1129-1138 . 10.1007/s11517-008-0361-8
  • 36 Prasad A, To LK, Gorrepati ML, Zarins CK, Figueroa CA. Computational analysis of stresses acting on intermodular junctions in thoracic aortic endografts. J Endovasc Ther 2011; 18: 559-568 . 10.1583/11-3472.1
  • 37 Tse KM, Chiu P, Lee HP, Ho P. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J Biomech 2011; 44: 827-836 . 10.1016/j.jbiomech.2010.12.014
  • 38 Stalder AF, Liu Z, Hennig J, Korvink JG, Li KC, Markl M. Patient specific hemodynamics: combined 4D flow-sensitive MRI and CFD. Computational Biomechanics for Medicine. XII. Springer; 2010. p. 27-38 . 10.1007/978-1-4419-9619-0_4
  • 39 Balossino R, Pennati G, Migliavacca F, Formaggia L, Veneziani A, Tuveri M. , et al. Computational models to predict stenosis growth in carotid arteries: which is the role of boundary conditions?. Comput Methods Biomech Biomed Eng 2009; 12: 113-123 . 10.1080/10255840903080802
  • 40 Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Engrg 2006; 195: 3776-3796 . 10.1016/j.cma.2005.04.014
  • 41 Bazilevs Y, Calo VM, Zhang Y, Hughes TJR. Isogeometric fluid structure interaction analysis with applications to arterial blood flow. Comput Mech 2006; 38: 310-322 . 10.1007/s00466-006-0084-3
  • 42 Crosetto P, Reymond P, Deparis S, Kontaxakis V, Stergiopulos N, Quarteroni A. Fluid-structure interaction simulation of aortic blood flow. Comp Fluids 2011; 43: 46-57 . 10.1016/j.compfluid.2010.11.032
  • 43 Li Z, Kleinstreuer C. Computational analysis of type II endoleaks in a stented abdominal aortic aneurysm model. J Biomech 2006; 39: 2573-2582 . 10.1016/j.jbiomech.2005.09.002
  • 44 Molony DS, Kavanagh EG, Madhavan P, Walsh MT, McGloughlin TM. A computational study of the magnitude and direction of migration forces in patient-specific abdominal aortic aneurysm stent-grafts. Eur J Vasc Endovasc Surg 2010; 40: 332-339 . 10.1016/j.ejvs.2010.06.001
  • 45 Borghi A, Wood NB, Mohiaddin RH, Xu XY. Fluid-solid interaction simulation of flow and stress pattern in thoracoabdominal aneurysms: a patient-specific study. J Fluids Structures 2008; 24: 270-280 . 10.1016/j.jfluidstructs.2007.08.005
  • 46 Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, Montevecchi FM. , et al. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech Model Mechanobiol 2011; 10: 339-355 . 10.1007/s10237-010-0238-2
  • 47 Frauenfelder T, Lotfey M, Boehm T, Wildermuth S. Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation. Cardiovasc Intervent Radiol 2006; 29: 613-623 . 10.1007/s00270-005-0227-5
  • 48 Howell BA, Kim T, Cheer A, Dwyer H, Saloner D, Chuter TA. Computational fluid dynamics within bifurcated abdominal aortic stent-grafts. J Endovasc Ther 2007; 14: 138-143 . 10.1583/1545-1550(2007)14[138:CFDWBA]2.0.CO;2
  • 49 Frydrychowicz A, Francois CJ, Turski PA. Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications. Eur J Radiol 2011; 80: 24-35 . 10.1016/j.ejrad.2011.01.094
  • 50 Zarins CK, Taylor CA. Endovascular device design in the future: transformation from trial and error to computational design. J Endovasc Ther 2009; 16 (Suppl 1) I12-I21 . 10.1583/08-2640.1