CC BY 4.0 · Aorta (Stamford) 2014; 02(05): 186-195
DOI: 10.12945/j.aorta.2014.14-032
Basic Science for the Clinician
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Heterogeneity in the Segmental Development of the Aortic Tree

Impact on Management of Genetically Triggered Aortic Aneurysms
Hisham M.F. Sherif
1   Department of Cardiac Surgery, Christiana Hospital, Christiana Care Health System, Newark, Delaware, USA
› Author Affiliations
Further Information

Publication History

27 May 2014

07 August 2014

Publication Date:
24 September 2018 (online)

Abstract

An extensive search of the medical literature examining the development of the thoracic aortic tree reveals that the thoracic aorta does not develop as one unit or in one stage: the oldest part of the thoracic aorta is the descending aorta with the aortic arch being the second oldest, developing under influence from the neural crest cell. Following in chronological order are the proximal ascending aorta and aortic root, which develop from a conotruncal origin. Different areas of the thoracic aorta develop under the influence of different gene sets. These parts develop from different cell lineages: the aortic root (the conotruncus), developing from the mesoderm; the ascending aorta and aortic arch, developing from the neural crest cells; and the descending aorta from the mesoderm. Findings illustrate that the thoracic aorta is not a single entity, in developmental terms. It develops from three or four distinct areas, at different stages of embryonic life, and under different sets of genes and signaling pathways. Genetically triggered thoracic aortic aneurysms are not a monolithic group but rather share a multi-genetic origin. Identification of therapeutic targets should be based on the predilection of certain genes to cause aneurysmal disease in specific aortic segments.

 
  • References

  • 1 Caglayan AO, Dundar M. Inherited diseases and syndromes leading to aortic aneurysms and dissections. Eur J Cardiothorac Surg 2009; 35: 931-940 . 10.1016/j.ejcts.2009.01.006
  • 2 Jondeau G. Phenotypic heterogeneity and determinants in aortic aneurysm syndromes. . Proceedings, the Aortic Disease Summit. Baltimore, Maryland. September 22-23, 2009
  • 3 Elefteriades JA, Farkas EA. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J Am Coll Cardiol 2010; 55: 841-857 . 10.1016/j.jacc.2009.08.084
  • 4 Sherif HMF. In search of a new therapeutic target for the treatment of genetically triggered thoracic aortic aneurysms and cardiovascular conditions: insights from human and animal lathyrism. Interact CardioVasc Thorac Surg 2010; 11: 271-276 . 10.1510/icvts.2010.239681
  • 5 Winstein B. What guides early embryonic blood vessel formation?. Dev Dyn 1999; 215: 2-11
  • 6 Larsen W.. Development of the heart. In: Human Embryology. New York: Churchill Livingstone; 1997. , p. 135-161
  • 7 Abu-Issa R, Kirby ML. Heart field: from mesoderm to heart tube. Annu Rev Cell Dev Biol 2007; 23: 45-68 . 10.1146/annurev.cellbio.23.090506.123331
  • 8 Siekmann AF, Standley C, Fogarty KE, Wolfe SA, Lawson ND. Chemokine signaling guides regional patterning of the first embryonic artery. Genes Dev 2009; 23: 2272-2277 . 10.1101/gad.1813509
  • 9 Cleaver, Krieg P. VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. Development 1998; 125: 3905-3914
  • 10 McLean SE, Mecham BH, Kelleher CM, Mariani TJ, Mecham RP. Extracellular matrix gene expression in the developing mouse aorta. Adv Dev Biol 2005; 15: 81-128 . 10.1016/S1574-3349(05)15003-0
  • 11 Hungerford JE, Owens GK, Argraves WS, Little CD. Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers. Dev Biol 1996; 178: 375-392 . 10.1006/dbio.1996.0225
  • 12 Eriksson J, Löfberg J. Development of the hypochord and dorsal aorta in the zebrafish embryo (Danio rerio). J Morphol 2000; 244: 167-176 . 10.1002/(SICI)1097-4687(200006)244:3<167::AID-JMOR2>3.0.CO;2-J
  • 13 Hunt P, Clarke JD, Buxton P, Ferretti P, Thorogood P. Stability and plasticity of neural crest patterning and branchial arch Hox code after extensive cephalic crest rotation. Dev Biol 1998; 198: 82-104 . 10.1006/dbio.1998.8886
  • 14 Bockman DE, Redmond ME, Kirby ML. Alteration of early vascular development after ablation of cranial neural crest. Anat Rec 1989; 225: 209-217 . 10.1002/ar.1092250306
  • 15 Bockman DE, Redmond ME, Waldo K, Davis H, Kirby ML. Effect of neural crest ablation on development of the heart and arch arteries in the chick. Am J Anat 1987; 180: 332-341 . 10.1002/aja.1001800403
  • 16 Bergwerff M, DeRuiter MC, Hall S, Poelmann RE, Gittenberger-de Groot AC. Unique vascular morphology of the fourth aortic arches: possible implications for pathogenesis of type-B aortic arch interruption and anomalous right subclavian artery. Cardiovasc Res 1999; 44: 185-196 . 10.1016/S0008-6363(99)00186-8
  • 17 Kirby ML. Cellular and molecular contributions of the cardiac neural crest to cardiovascular development. Trends Cardiovasc Med 1993; 3: 18-23 . 10.1016/1050-1738(93)90023-Y
  • 18 Porras D, Brown CB. Temporal-spatial ablation of neural crest in the mouse results in cardiovascular defects. Dev Dyn 2008; 237: 153-162 . 10.1002/dvdy.21382
  • 19 Kirby ML, Hunt P, Wallis K, Thorogood P. Abnormal patterning of the aortic arch arteries does not evoke cardiac malformations. Dev Dyn 1997; 208: 34-47 . 10.1002/(SICI)1097-0177(199701)208:1<34::AID-AJA4>3.0.CO;2-2
  • 20 Yashiro K, Shiratori H, Hamada H. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 2007; 450: 285-288 . 10.1038/nature06254
  • 21 Larsen W.. Development of the heart. In: Human Embryology. New York: Churchill Livingstone; 1997. , p. 169-187
  • 22 Bruneau B. The developmental genetics of congenital heart disease. Nature 2008; 451: 943-948 . 10.1038/nature06801
  • 23 Nishibatake M, Kirby ML, Van Mierop LH. Pathogenesis of persistent truncus arteriosus and dextroposed aorta in the chick embryo after neural crest ablation. Circulation 1987; 75: 255-264 . 10.1161/01.CIR.75.1.255
  • 24 Hutson MR, Kirby ML. Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations. Semin Cell Dev Biol 2007; 18: 101-110 . 10.1016/j.semcdb.2006.12.004
  • 25 Restivo A, Piacintini G, Placidi S, Saffirio C, Marino B. Cardiac outflow tract: a review of some embryogenetic aspects of the conotruncal region of the heart. Anat Rec A Discov Mol Cell Evol Biol 2006; 288: 936-943 . 10.1002/ar.a.20367
  • 26 Beall AC, Rosenquist TH. Smooth muscle cells of neural crest origin form the aorticopulmonary septum in the avian embryo. Anat Rec 1990; 226: 360-366 . 10.1002/ar.1092260313
  • 27 Kappetein A, Gittenberger-de Groot A, Zwinderman A, Rohmer J, Poelmann R, Huysmans H. The neural crest as a possible pathogenetic factor in coarctation of the aorta and bicuspid aortic valve. J Thorac Cardiovasc Surg 1991; 102: 830-836
  • 28 Anderson RH, Webb S, Brown NA, Lamers W, Moorman A. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart 2003; 89: 1110-1118 . 10.1136/heart.89.9.1110
  • 29 Qayyum SR, Webb S, Anderson RH, Verbeek FJ, Brown NA, Richardson MK. Septation and valvar formation in the outflow tract of the embryonic chick heart. Anat Rec 2001; 264: 273-283 . 10.1002/ar.1162
  • 30 Webb S, Qayyum SR, Anderson RH, Lamers WH, Richardson MK. Septation and separation within the outflow tract of the developing heart. J Anat 2003; 202: 327-342 . 10.1046/j.1469-7580.2003.00168.x
  • 31 Maron B, Hutchins G. The development of the semilunar valves in the human heart. Am J Pathol 1974; 74: 333-344
  • 32 Fernández B, Durán AC, Fernández-Gallego T, Fernández MC, Such M, Arqué JM. , et al. Bicuspid aortic valves with different spatial orientations of the leaflets are distinct etiologic entities. J Am Coll Cardiol 2009; 54: 2312-2318 . 10.1016/j.jacc.2009.07.044
  • 33 Cho H, Harrison K, Schwartz O, Kehrl JH. The aorta and heart differentially express RGS (regulators of G-protein signalling) proteins that selectively regulate sphingosine 1-phosphate, angiotensin II and endothelin-1 signalling. Biochem J 2003; 371: 973-980 . 10.1042/BJ20021769
  • 34 Downes M, Koopman P. SOX18 and the transcriptional regulation of blood vessel development. Trends Cardiovasc Med 2001; 11: 318-324 . 10.1016/S1050-1738(01)00131-1
  • 35 Yang X, Castilla LH, Xu X, Li C, Gotay J, Weinstein M. , et al. Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. Development 1999; 126: 1571-1580
  • 36 Zhong TP, Rosenberg M, Mohideen MA, Weinstein B, Fishman MC. gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 2000; 287: 1820-1824 . 10.1126/science.287.5459.1820
  • 37 Jaffe M, Sesti C, Washington IM, Du L, Dronadula N, Chin MT. , et al. Transforming growth factor β signaling in myogenic cells regulates vascular morphogenesis, differentiation and matrix synthesis. Arterioscler Thromb Vasc Biol 2012; 23: e1-e11 . 10.1161/ATVBAHA.111.238410
  • 38 Topouzis S, Majesky M. Smooth muscle lineage diversity in the chick embryo: two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-β. Dev Biol 1996; 178: 430-445 . 10.1006/dbio.1996.0229
  • 39 Patterson LJ, Gering M, Patient R. Scl is required for dorsal aorta as well as blood formation in zebrafish embryos. Blood 2005; 105: 3502-3511 . 10.1182/blood-2004-09-3547
  • 40 Cha YI, Kim SH, Solnica-Krezel L, DuBois RN. Cyclooxygenase-1 signaling is required for vascular tube formation during development. Dev Biol 2005; 282: 274-283 . 10.1016/j.ydbio.2005.03.014
  • 41 Ben Abdelkhalek H, Beckers A, Schuster-Gossler K, Pavlova MN, Burkhardt H, Lickert H. , et al. The mouse homeobox gene Not is required for caudal notochord development and affected by the truncate mutation. Genes Dev 2004; 18: 1725-1736 . 10.1101/gad.303504
  • 42 Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS. , et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 1997; 11: 1048-1060 . 10.1101/gad.11.8.1048
  • 43 Holzenberger M, Ayer-Le Lièvre, Robert L. Tropoelastin gene expression in the developing vascular system of the chicken: an in situ hybridization study. Anat Embryol 1993; 188: 481-492
  • 44 Abdulla RI, Slott EF, Kirby ML. Proteins associated with cardiac neural crest in the pharyngeal region of early chick embryos. Pediatr Res 1993; 33: 43-47 . 10.1203/00006450-199301000-00009
  • 45 Biben C, Hatzistavrou T, Harvey R. Expression of NK-2 class homeobox gene Nkx2-6 in foregut endoderm and heart. Mech Dev 1998; 73: 125-127 . 10.1016/S0925-4773(98)00037-9
  • 46 Calmont A, Ivins S, Van Bueren KL, Papangeli I, Kyriakopoulou V, Andrews WD. , et al. Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development 2009; 136: 3173-3183 . 10.1242/dev.028902
  • 47 Gittenberger-de Groot AC, Azhar M, Molin DG. Transforming growth factor beta-SMAD2 signaling and aortic arch development. Trends Cardiovasc Med 2006; 16: 1-6 . 10.1016/j.tcm.2005.09.006
  • 48 Waldo KL, Lo CW, Kirby ML. Connexin 43 expression reflects neural crest patterns during cardiovascular development. Dev Biol 1999; 208: 307-323 . 10.1006/dbio.1999.9219
  • 49 Yanagisawa H, Hammer RE, Richardson JA, Williams SC, Clouthier DE, Yanagisawa M. Role of endothelin-1/endothelin-A-receptor-mediated signaling pathway in the aortic arch patterning in mice. J Clin Invest 1998; 102: 22-33 . 10.1172/JCI2698
  • 50 Morishima M, Yanagisawa H, Yanagisawa M, Baldini A. Ece1 and Tbx1 define distinct pathways to aortic arch morphogenesis. Dev Dyn 2003; 228: 95-104 . 10.1002/dvdy.10358
  • 51 Gavalas A, Trainor P, Ariza-McNaughton L, Krumlauf R. Synergy between Hoxa1 and Hoxb1: the relationship between arch patterning and the generation of cranial neural crest. Development 2001; 128: 3017-3027
  • 52 Kameda Y. Hoxa3 and signaling molecules involved in aortic arch patterning and remodeling. Cell Tissue Res 2009; 336: 165-178 . 10.1007/s00441-009-0760-7
  • 53 Liao J, Aggarwal VS, Nowotschin S, Bondarev A, Lipner S, Morrow BE. Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev Biol 2008; 316: 524-537 . 10.1016/j.ydbio.2008.01.037
  • 54 Molin DG, Poelmann RE, DeRuiter MC, Azhar M, Doetschman T, Gittenberger-de Groot AC. Transforming growth factor beta-SMAD2 signaling regulates aortic arch innervation and development. Circ Res 2004; 95: 1109-1117 . 10.1161/01.RES.0000150047.16909.ab
  • 55 Ohnemus S, Kanzler B, Jerome-Majewska L, Papaioannou VE, Boehm T, Mallo M. Aortic arch and pharyngeal phenotype in the absence of BMP-dependent neural crest in the mouse. Mech Dev 2002; 119: 127-135 . 10.1016/S0925-4773(02)00345-3
  • 56 Schäfer K, Neuhaus P, Kruse J, Braun T. The homeobox gene Lbx1 specifies a subpopulation of cardiac neural crest necessary for normal heart development. Circ Res 2002; 92: 73-80 . 10.1161/01.RES.0000050587.76563.A5
  • 57 Thomas T, Kurihara H, Yamagishi H, Kurihara Y, Yazaki Y, Olson EN. , et al. A signaling cascade involving endothelin-1, dHAND and msx1 regulates development of neural-crest-derived branchial arch mesenchyme. Development 1998; 125: 3005-3014
  • 58 Hutson MR, Zhang P, Stadt HA, Sato AK, Li YX, Burch J. , et al. Cardiac arterial pole alignment is sensitive to FGF8 signaling in the pharynx. Dev Biol 2006; 295: 486-497 . 10.1016/j.ydbio.2006.02.052
  • 59 van Gijn M, Blankesteijn W, Smits J, Hierck B, Gittenberger-de Groot A. Frizzled 2 is transiently expressed in neural crest-containing areas during development of the heart and great arteries in the mouse. Anat Embryol 2001; 203: 185-192
  • 60 Vitelli F, Zhang Z, Huynh T, Sobotka A, Mupo A, Baldini A. Fgf8 expression in the Tbx1 domain causes skeletal abnormalities and modifies the aortic arch but not the outflow tract phenotype of Tbx1 mutants. Dev Biol 2006; 295: 559-570 . 10.1016/j.ydbio.2006.03.044
  • 61 Vitelli F, Taddei I, Morishima M, Meyers EN, Lindsay EA, Baldini A. A genetic link between Tbx1 and fibroblast growth factor signaling. Development 2002; 129: 4605-4611
  • 62 Randall V, McCue K, Roberts C, Kyriakopoulou V, Beddow S, Barrett AN. , et al. Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. J Clin Invest 2009; 119: 3301-3310 . 10.1172/JCI37561
  • 63 Scambler PJ. 22q11 deletion syndrome: a role for TBX1 in pharyngeal and cardiovascular development. Pediatr Cardiol 2010; 31: 378-390 . 10.1007/s00246-009-9613-0
  • 64 Bergwerff M, Gittenberger-de Groot AC, Wisse LJ, DeRuiter MC, Wessels A, Martin JF. , et al. Loss of function of the Prx1 and Prx2 homeobox genes alters architecture of the great elastic arteries and ductus arteriosus. Virchows Arch 2000; 436: 12-19 . 10.1007/PL00008193
  • 65 Farrell MJ, Stadt H, Wallis KT, Scambler P, Hixon RL, Wolfe R. , et al. HIRA, a DiGeorge syndrome candidate gene, is required for cardiac outflow tract septation. Circ Res 1999; 84: 127-135 . 10.1161/01.RES.84.2.127
  • 66 Heathcote K, Braybrook C, Abushaban L, Guy M, Khetyar ME, Patton MA. , et al. Common arterial trunk associated with a homeodomain mutation of NKX2.6. Hum Mol Genet 2005; 14: 585-593 . 10.1093/hmg/ddi055
  • 67 Mesbah K, Harrelson Z, Théveniau-Ruissy M, Papaioannou VE, Kelly RG. Tbx3 is required for outflow tract development. Circ Res 2008; 103: 743-750 . 10.1161/CIRCRESAHA.108.172858
  • 68 Nie X, Brown CB, Wang Q, Jiao K. Inactivation of Bmp4 from the Tbx1 expression domain causes abnormal pharyngeal artery and cardiac outflow tract remodeling. Cells Tissue Organs 2011; 193: 393-403 . 10.1159/000321170
  • 69 Washington Smoak I, Byrd NA, Abu-Issa R, Goddeeris MM, Anderson R, Morris J. , et al. Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Dev Biol 2005; 283: 357-372 . 10.1016/j.ydbio.2005.04.029
  • 70 Kim RY, Robertson EJ, Solloway MJ. Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev Biol 2001; 235: 449-466 . 10.1006/dbio.2001.0284
  • 71 Xu H, Morishima M, Wylie JN, Schwartz RJ, Bruneau BG, Lindsay EA. , et al. Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 2004; 131: 3217-3227 . 10.1242/dev.01174
  • 72 Vincentz JW, McWhirter JR, Murre C, Baldini A, Furuta Y. Fgf15 is required for proper morphogenesis of the mouse cardiac outflow tract. Genesis 2005; 41: 192-201 . 10.1002/gene.20114
  • 73 Chen YH, Ishii M, Sun J, Sucov HM, Maxson Jr RE. Msx1 and Msx2 regulate survival of secondary heart field precursors and post-migratory proliferation of cardiac neural crest in the outflow tract. Dev Biol 2007; 308: 421-437 . 10.1016/j.ydbio.2007.05.037
  • 74 Liao J, Aggarwal VS, Nowotschin S, Bondarev A, Lipner S, Morrow BE. Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev Biol 2008; 316: 524-537 . 10.1016/j.ydbio.2008.01.037
  • 75 Parisot P, Mesbah K, Théveniau-Ruissy M, Kelly RG. Tbx1, subpulmonary myocardium and conotruncal congenital heart defects. Birth Defects Res A Clin Mol Teratol 2011; 91: 477-484 . 10.1002/bdra.20803
  • 76 Raid R, Krinka D, Bakhoff L, Abdelwahid E, Jokinen E, Kärner M. , et al. Lack of Gata3 results in conotruncal heart anomalies in mouse. Mech Dev 2009; 126: 80-89 . 10.1016/j.mod.2008.10.001
  • 77 Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cardiac neural crest. Development 2000; 127: 1607-1616
  • 78 Hove JR, Köster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 2003; 421: 172-177 . 10.1038/nature01282
  • 79 Ewart AK, Morris CA, Ensing GJ, Loker J, Moore C, Leppert M. , et al. A human vascular disorder, supravalvular aortic stenosis, maps to chromosome 7. Proc Natl Acad Sci U S A 1993; 90: 3226-3230 . 10.1073/pnas.90.8.3226
  • 80 Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN. , et al. A role for Smad6 in development and homeostasis of the cardiovascular system [Letter]. Nat Genet 2000; 24: 171-174 . 10.1038/72835
  • 81 Martin LJ, Ramachandran V, Cripe LH, Hinton RB, Andelfinger G, Tabangin M. , et al. Evidence in favor of linkage to human chromosomal regions 18q, 5q and 13q for bicuspid aortic valve and associated cardiovascular malformations. Hum Genet 2007; 121: 275-284 . 10.1007/s00439-006-0316-9
  • 82 Sans-Coma V, Cardo M, Durán AC, Franco D, Fernández B, Arqué JM. Evidence for quantitative genetic influence on the formation of aortic valves with 2 leaflets in the Syrian hamster. Cardiol Young 1993; 3: 132-140
  • 83 Olson TM, Michels VV, Urban Z, Csiszar K, Christiano AM, Driscoll DJ. , et al. A 30kb deletion within the elastin gene results in familial supravalvular aortic stenosis. Hum Mol Genet 1995; 9: 1677-1679
  • 84 Ruddy JM, Jones JA, Spinale FG, Ikonomidis JS. Regional heterogeneity within the aorta: relevance to aneurysm disease. J Thorac Cardiovasc Surg 2008; 136: 1123-1130 . 10.1016/j.jtcvs.2008.06.027
  • 85 Milewicz DM, Guo DC, Tran-Fadulu V, Lafont AL, Papke CL, Inamoto S. , et al. Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu Rev Genom Hum Genet 2008; 9: 283-302 . 10.1146/annurev.genom.8.080706.092303
  • 86 Wang L, Guo DC, Cao J, Gong L, Kamm KE, Regalado E. , et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet 2010; 87: 701-707 . 10.1016/j.ajhg.2010.10.006
  • 87 The National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC). Available online at: https://gentac.rti.org/Home.aspx