Subscribe to RSS
DOI: 10.12945/j.aorta.2015.15.030
Biomechanical Rupture Risk Assessment
A Consistent and Objective Decision-Making Tool for Abdominal Aortic Aneurysm PatientsPublication History
07 October 2015
04 February 2016
Publication Date:
24 September 2018 (online)
Abstract
Abdominal aortic aneurysm (AAA) rupture is a local event in the aneurysm wall that naturally demands tools to assess the risk for local wall rupture. Consequently, global parameters like the maximum diameter and its expansion over time can only give very rough risk indications; therefore, they frequently fail to predict individual risk for AAA rupture. In contrast, the Biomechanical Rupture Risk Assessment (BRRA) method investigates the wall’s risk for local rupture by quantitatively integrating many known AAA rupture risk factors like female sex, large relative expansion, intraluminal thrombus-related wall weakening, and high blood pressure. The BRRA method is almost 20 years old and has progressed considerably in recent years, it can now potentially enrich the diameter indication for AAA repair. The present paper reviews the current state of the BRRA method by summarizing its key underlying concepts (i.e., geometry modeling, biomechanical simulation, and result interpretation). Specifically, the validity of the underlying model assumptions is critically disused in relation to the intended simulation objective (i.e., a clinical AAA rupture risk assessment). Next, reported clinical BRRA validation studies are summarized, and their clinical relevance is reviewed. The BRRA method is a generic, biomechanics-based approach that provides several interfaces to incorporate information from different research disciplines. As an example, the final section of this review suggests integrating growth aspects to (potentially) further improve BRRA sensitivity and specificity. Despite the fact that no prospective validation studies are reported, a significant and still growing body of validation evidence suggests integrating the BRRA method into the clinical decision-making process (i.e., enriching diameter-based decision-making in AAA patient treatment).
-
References
- 1 The UK Small Aneurysm Trial Participants. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet 1998; 352: 1649-1655 . DOI: 10.1016/S0140-6736(98)10137-X
- 2 Greenhalgh RM, Powell JT. Endovascular repair of abdominal aortic aneurysm. N Engl J Med 2008; 358: 494-501 . DOI: 10.1056/NEJMct0707524
- 3 Brown LC, Powell JT. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK Small Aneurysm Trial Participants. Ann Surg 1999; 230: 289-296 . DOI: 10.1097/00000658-199909000-00002
- 4 Nicholls SC, Gardner JB, Meissner MH, Johansen HK. Rupture in small abdominal aortic aneurysms. J Vasc Surg 1998; 28: 884-888 . DOI: 10.1016/S0741-5214(98)70065-5
- 5 Darling RC, Messina CR, Brewster DC, Ottinger LW. Autopsy study of unoperated abdominal aortic aneurysms. Circulation 1977; 56: II161-II164 . PMID: 884821
- 6 Martufi G, Auer M, Roy J, Swedenborg J, Sakalihasan N, Panuccio G. , et al. Multidimensional growth measurements abdominal aortic aneurysms. J Vasc Surg 2013; 58: 748-755 . DOI: 10.1016/j.jvs.2012.11.070
- 7 Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg 2002; 36: 589-597 . DOI: 10.1067/mva.2002.125478
- 8 Fillinger MF, Marra SP, Raghavan ML, Kennedy FE. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg 2003; 37: 724-732 . DOI: 10.1067/mva.2003.213
- 9 Venkatasubramaniam AK, Fagan MJ, Mehta T, Mylankal KJ, Ray B, Kuhan G. , et al. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 2004; 28: 168-176 . DOI: 10.1016/s1078-5884(04)00178-9
- 10 Vande Geest JP, Di Martino ES, Bohra A, Mackaroun MS, Vorp DA. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann N Y Acad Sci 2006; 1085: 11-21 . DOI: 10.1196/annals.1383.046
- 11 Truijers M, Pol JA, Schultzekool LJ, van Strekenburg SM, Fillinger MF, Blankensteijn JD. Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 2007; 33: 401-407 . DOI: 10.1016/j.ejvs.2006.10.009
- 12 Vande Geest JP, Schmidt DE, Sacks MS, Vorp DA. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann Biomed Eng 2008; 36: 921-932 . DOI: 10.1007/s10439-008-9490-3
- 13 Maier A, Gee MW, Reeps C, Pongratz J, Eckstein HH, Wall WA. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann Biomed Eng 2010; 38: 3124-3134 . DOI: 10.1007/s10439-010-0067-6
- 14 Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J. Biomechanical rupture risk assessment of abdominal aortic aneurysms: Model complexity versus predictability of finite element simulations. Eur J Vasc Endovasc Surg 2010; 40: 176-185 . DOI: 10.1016/j.ejvs.2010.04.003
- 15 McGloughlin TM, Doyle BJ. New approaches to abdominal aortic aneurysm rupture risk assessment: engineering insights with clinical gain. Arterioscler Thromb Vasc Biol 2010; 30: 1687-1694 . DOI: 10.1161/ATVBAHA.110.204529
- 16 Gasser TC, Nchimi A, Swedenborg J, Roy J, Sakalihasan N, Böckler D. , et al. A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: Method and retrospective validation. Eur J Vasc Endovasc Surg 2014; 47: 288-295 . DOI: 10.1016/j.ejvs.2013.12.018
- 17 Reeps C, Maier A, Pelisek J, Härtl F, Grabher-Maier V, Wall WA. , et al. Measuring and modeling patient-specific distributions of material properties in abdominal aortic wall. Biomech Model Mechanobiol 2013; 12: 717-733 . DOI: 10.1007/s10237-012-0436-1
- 18 Vorp DA, Lee PC, Wang DH, Makaroun MS, Nemoto EM, Ogawa S. , et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J Vasc Surg 2001; 34: 291-299 . DOI: 10.1067/mva.2001.114813
- 19 Vorp DA, Raghavan ML, Webster MW. Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J Vasc Surg 1998; 27: 632-639 . DOI: 10.1016/S0741-5214(98)70227-7
- 20 Hua J, Mower WR. Simple geometric characteristics fail to reliably predict abdominal aortic aneurysm wall stresses. J Vasc Surg 2001; 34: 308-315 . DOI: 10.1067/mva.2001.114815
- 21 Heikkinen M, Salenius J, Zeitlin R, Saarinen J, Suominen V, Metsänoja R. , et al. The fate of AAA patients referred electively to vascular surgical unit. Scand J Surg 2002; 91: 345-352 . PMID: 12558084
- 22 Brown PM, Zelt DT, Sobolev B. The risk of rupture in untreated aneurysms: the impact of size, gender, and expansion rate. J Vasc Surg 2003; 37: 280-284 . DOI: 10.1067/mva.2003.119
- 23 Wilson KA, Lee AJ, Hoskins PR, Fowkes FG, Ruckley CV, Bradbury AW. The relationship between aortic wall distensibility and rupture of infrarenal abdominal aortic aneurysm. J Vasc Surg 2003; 37: 112-117 . DOI: 10.1067/mva.2003.40
- 24 Derubertis BG, Trocciola SM, Ryer EJ, Pieracci FM, McKinsey JF, Faries PL. , et al. Abdominal aortic aneurysm in women: prevalence, risk factors, and implications for screening. J Vasc Surg 2007; 46: 630-635 . DOI: 10.1016/j.jvs.2007.06.024
- 25 Darling 3rd RC, Brewster DC, Darling RC, LaMuraglia GM, Moncure AC, Cambria RP. , et al. Are familial abdominal aortic aneurysms different?. J Vasc Surg 1989; 10: 39-43 . DOI: 10.1016/0741-5214(89)90283-8
- 26 Verloes A, Sakalihasan N, Koulischer L, Limet R. Aneurysms of the abdominal aorta: familial and genetic aspects in three hundred thirteen pedigrees. J Vasc Surg 1995; 21: 646-655 . DOI: 10.1016/S0741-5214(95)70196-6
- 27 Larsson E, Granath F, Swedenborg J, Hultgren R. A population-based case-control study of the familial risk of abdominal aortic aneurysm. J Vasc Surg 2009; 49: 47-50 . DOI: 10.1016/j.jvs.2008.08.012
- 28 Sakalihasan N, Van Damme H, Gomez P, Rigo P, Lapiere CM, Nusgens B. , et al. Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA). Eur J Vasc Endovasc Surg 2002; 23: 431-436 . DOI: 10.1053/ejvs.2002.1646
- 29 Nchimi A, Cheramy-Bien JP, Gasser TC, Namur G, Gomez P, Seidel L. , et al. Multifactorial relationship between 18F-fluoro-deoxy-glucose positron emission tomography signaling and biomechanical properties in unruptured aortic aneurysms. Circ Cardiovasc Imaging 2014; 7: 82-91 . DOI: 10.1161/CIRCIMAGING.112.000415
- 30 Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U. , et al. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg 2003; 38: 1283-1292 . DOI: 10.1016/S0741-5214(03)00791-2
- 31 Stenbaek J, Kalin B, Swedenborg J. Growth of thrombus may be a better predictor of rupture than diameter in patients with abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 2000; 20: 466-499 . DOI: 10.1053/ejvs.2000.1217
- 32 VASCOPS GmbH. On-line survey: Clinical assessment of AAA rupture risk. Are biomechanical predictors needed, 2006 Available at http://www.vascops.com/files/survey2006.pdf
- 33 Bäck M, Gasser TC, Michel JB, Caligiuri G. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc Res 2013; 99: 232-241 . DOI: 10.1093/cvr/cvt040
- 34 Vorp DA. Biomechanics of abdominal aortic aneurysm. J Biomech 2007; 40: 1887-1902 . DOI: 10.1016/j.jbiomech.2006.09.003
- 35 Khosla S, Morris DR, Moxon JV, Walker PJ, Gasser TC, Golledge J. Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. Brit J Surg 2014; 101: 1350-1357 DOI: 10.1002/bjs.9578
- 36 Erhart P, Hyhlik-Dürr A, Geisbüsch P, Kotelis D, Müller-Eschner M, Gasser TC. , et al. Finite element analysis in asymptomatic, symptomatic and ruptured abdominal aortic aneurysms – in search of new rupture risk predictors. Eur J Vasc Endovasc Surg 2015; 49: 239-245 . DOI: 10.1016/j.ejvs.2014.11.010
- 37 Bonet J, Wood RD. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press; Mar 13, 2008
- 38 Quote investigator: Exploring the Origins of Quotes. Available at http://quoteinvestigator.com/2011/05/13/einstein-simple/#more-2363
- 39 Sargent RG. Verification and validation of simulation models. Proceedings of the 2011 Winter Simulation Conference http://www.informs-sim.org/wsc11papers/016.pdf
- 40 Raghavan ML, Vorp DA. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 2000; 33: 475-482 . DOI: 10.1016/S0021-9290(99)00201-8
- 41 Di Martino ES, Vorp DA. Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann Biomed Eng 2003; 31: 804-809 . DOI: 10.1114/1.1581880
- 42 Polzer S, Gasser TC, Bursa J, Staffa R, Vlachovsky R, Man V. , et al. Importance of material model in wall stress prediction in abdominal aortic aneurysms. Med Eng Phys 2013; 35: 1282-1289 . DOI: 10.1016/j.medengphy.2013.01.008
- 43 Adolph R, Vorp DA, Steed DL, Webster MW, Kameneva MV, Watkins SC. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J Vasc Surg 1997; 25: 916-926 . DOI: 10.1016/S0741-5214(97)70223-4
- 44 Gasser TC, Martufi G, Auer M, Folkesson M, Swedenborg J. Micromechanical characterization of intra-luminal thrombus tissue from abdominal aortic aneurysms. Ann Biomed Eng 2010; 38: 371-379 . DOI: 10.1007/s10439-009-9837-4
- 45 Ayyalasomayajula A, Vande Geest JP, Simon BR. Porohyperelastic finite element modeling of abdominal aortic aneurysms. J Biomech Eng 2010; 132: 104502 . DOI: 10.1115/1.4002370
- 46 Polzer S, Gasser TC, Markert B, Bursa J, Skacel P. Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms. Biomed Eng Online 2012; 11: 62 . DOI: 10.1186/1475-925X-11-62
- 47 Vande Geest JP, Sacks MS, Vorp DA. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech 2006; 39: 1324-1334 . DOI: 10.1016/j.jbiomech.2005.03.003
- 48 O’Leary SA, Healy D, Kavanagh EG, Walsh MT, McGloughlin TM, Doyle BJ. The biaxial biomechanical behavior of abdominal aortic aneurysm tissue. Ann Biomed Eng 2014; 42: 2440-2450 . DOI: 10.1007/s10439-014-1106-5
- 49 Martufi G, Di Martino ES, Amon CH, Muluk SC, Finol EA. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J Biomech Eng 2009; 131: 061015 . DOI: 10.1115/1.3127256.
- 50 Shum J, DiMartino ES, Goldhammer A, Goldman DH, Acker LC, Patel G. , et al. Semi-automatic vessel wall detection and quantification of wall thickness in CT images of human abdominal aortic aneurysms. Med Phys 2010; 37: 638-648 . DOI: 10.1118/1.3284976
- 51 Raghavan ML, Kratzberg J, Castro de Tolosa EM, Hanaoka MM, Walker P, da Silva ES. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J Biomech 2006; 39: 3010-3016 . DOI: 10.1016/j.jbiomech.2005.10.021
- 52 Maier A. Computational Modeling of Rupture Risk in Abdominal Aortic Aneurysms. Munich: Verlag Dr. Hut; 2013
- 53 Di Martino ES, Bohra A, Vande Geest JP, Gupta N, Makaroun M, Vorp DA. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J Vasc Surg 2006; 43: 570-576 . DOI: 10.1016/j.jvs.2005.10.072
- 54 Raghavan ML, Hanaoka MM, Kratzberg JA, de Lourdes Higuchi M, da Silva ES. Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms. J Biomech 2011; 44: 2501-2507 . DOI: 10.1016/j.jbiomech.2011.06.004
- 55 Maier A, Gee MW, Reeps C, Eckstein HH, Wall WA. Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Biomech Model Mechanobiol 2010; 9: 511-521 . DOI: 10.1007/s10237-010-0191-0
- 56 O’Leary SA, Mulvihill JJ, Barrett HE, Kavanagh EG, Walsh MT, McGloughlin TM. , et al. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue. J Mech Behav Biomed Mater 2015; 42: 154-167 . DOI: 10.1016/j.jmbbm.2014.11.005
- 57 Tavares Monteiro JA, da Silva ES, Raghavan ML, Puech-Leão P, de Lourdes Higuchi M, Otoch JP. Histologic, histochemical, and biomechanical properties of fragments isolated from the anterior wall of abdominal aortic aneurysms. J Vasc Surg 2014; 59: 1393-1401 . DOI: 10.1016/j.jvs.2013.04.064
- 58 Vande Geest JP, Dillavou ED, Di Martino ES, Oberdier M, Bohra A, Makaroun MS. , et al. Gender-related differences in the tensile strength of abdominal aortic aneurysm. Ann N Y Acad Sci 2006; 1085: 400-402 . DOI: 10.1196/annals.1383.048
- 59 Thubrikar MJ, Labrosse M, Robicsek F, Al-Soudi J, Fowler B. Mechanical properties of abdominal aortic aneurysm wall. J Med Eng Technol 2001; 25: 133-142 . DOI: 10.1080/03091900110057806
- 60 Raghavan ML, Webster MW, Vorp DA. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann Biomed Eng 1996; 24: 573-582 . DOI: 10.1007/BF02684226
- 61 Vande Geest JP, Sacks MS, Vorp DA. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J Biomech 2006; 39: 2347-2354 . DOI: 10.1016/j.jbiomech.2006.05.011
- 62 Gasser TC, Görgülü G, Folkesson M, Swedenborg J. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J Vasc Surg 2008; 48: 179-188 . DOI: 10.1016/j.jvs.2008.01.036
- 63 Romo A, Badel P, Duprey A, Favre JP, Avril S. In vitro analysis of localized aneurysm rupture. J Biomech 2014; 47: 607-616 . DOI: 10.1016/j.jbiomech.2013.12.012
- 64 Vande Geest JP, Wang DH, Wisniewski SR, Makaroun MS, Vorp DA. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann Biomed Eng 2006; 34: 1098-1106 . DOI: 10.1007/s10439-006-9132-6
- 65 Xiong J, Wang SM, Zhou W, Wu JG. Measurement and analysis of ultimate mechanical properties, stress-strain curve fit, and elastic modulus formula of human abdominal aortic aneurysm and nonaneurysmal abdominal aorta. J Vasc Surg 2008; 48: 189-195 . DOI: 10.1016/j.jvs.2007.12.053
- 66 Forsell C, Swedenborg J, Roy J, Gasser TC. The quasi-static failure properties of the abdominal aortic aneurysm wall estimated by a mixed experimental-numerical approach. Ann Biomed Eng 2013; 41: 1554-1566 . DOI: 10.1007/s10439-012-0711-4
- 67 Kubíçek L, Staffa R, Vlachovský R, Polzer S, Kružliak P. Incidence of small abdominal aortic aneurysms rupture, impact of comorbidities and our experience with rupture risk prediction based on wall stress assessment. Cor et Vasa 2015; 57: e127-e132 . DOI: 10.1016/j.crvasa.2015.02.005
- 68 Erhart P, Grond-Ginsbach C, Hakimi M, Lasitschka F, Dihlmann S, Böckler D. , et al. Finite element analysis of abdominal aortic aneurysms: predicted rupture risk correlates with aortic wall histology in individual patients. J Endovasc Ther 2014; 21: 556-564 . DOI: 10.1583/14-4695.1
- 69 Martufi G, Satriano A, Moore RD, Vorp DA, Di Martino ES. Local quantification of wall thickness and intraluminal thrombus offer insight into the mechanical properties of the aneurysmal aorta. Ann Biomed Eng 2015; 43: 1759-1771 . DOI: 10.1007/s10439-014-1222-2
- 70 Hyhlik-Dürr A, Krieger T, Geisbüsch P, Kotelis D, Able T, Böckler D. Reproducibility of deriving parameters of AAA rupture risk from patient-specific 3D finite element models. J Endovasc Ther 2011; 18: 289-298 . DOI: 10.1583/10-3384MR.1
- 71 Teutelink A, Cancrinus E, van de Heuvel D, Moll F, de Vries JP. Preliminary intraobserver and interobserver variability in wall stress and rupture risk assessment of abdominal aortic aneurysms using a semiautomatic finite element model. J Vasc Surg 2012; 55: 326-330 . DOI: 10.1016/j.jvs.2011.08.012
- 72 Auer M, Gasser TC. Automatic reconstruction and finite element mesh generation of abdominal aortic aneurysms. IEEE Trans Med. Imag 2010; 29: 1022-1028 . DOI: 10.1109/TMI.2009.2039579
- 73 Xu C, Pham DL, Price JL. Image segmentation using deformable models. In: Sonka M. (editor). Handbook of Medical Imaging: Medical Image Processing and Analysis. Bellingham, WA: SPIE Press; 2000. DOI: 10.1117/3.831079.ch3
- 74 Erhart P, Roy J, de Vries JP, Liljeqvist ML, Grond-Ginsbach C, Hyhlik-Dürr A. , et al. Prediction of rupture sites in Abdominal Aortic Aneurysms after Finite Element Analysis. J Endovasc Ther 2016; 23: 115-120 . DOI: 10.1177/1526602815612196
- 75 Brewster DC, Cronenwett JL, Hallett Jr JW, Johnston KW, Krupski WC, Matsumura JS. , et al. Guidelines for the treatment of abdominal aortic aneurysms. Report of a subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery. J Vasc Surg 2003; 37: 1106-1117 . DOI: 10.1067/mva.2003.363
- 76 Sakalihasan N, Michel JB. Functional imaging of atherosclerosis to advance vascular biology. Eur J Vasc Endovasc Surg 2009; 37: 728-734 . DOI: 10.1016/j.ejvs.2008.12.024
- 77 Maier A, Essler M, Gee MW, Eckstein HH, Wall WA, Reeps C. Correlation of biomechanics to tissue reaction in aortic aneurysms assessed by finite elements and [18F]-fluorodeoxyglucose-PET/CT. Int J Numer Method Biomed Eng 2012; 28: 456-471 . DOI: 10.1002/cnm.1477
- 78 Gasser TC, Ogden RW, Holzapfel GA. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Lond Interface 2006; 3: 15-35 . DOI: 10.1098/rsif.2005.0073
- 79 Powell JT, Sweeting MJ, Brown LC, Gotensparre SM, Fowkes FG, Thompson SG. Systematic review and meta-analysis of growth rates of small abdominal aortic aneurysms. Br J Surg 2011; 98: 609-618 . DOI: 10.1002/bjs.7465
- 80 Sweeting MJ, Thompson SG, Brown LC, Powell JT. RESCAN collaborators. Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms. Br J Surg 2012; 99: 655-665 . DOI: 10.1002/bjs.8707
- 81 Richards JM, Semple SI, MacGillivray TJ, Gray C, Langrish JP, Williams M. , et al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide: a pilot study. Circ Cardiovasc Imaging 2011; 4: 274-281 . DOI: 10.1161/CIRCIMAGING.110.959866
- 82 Martufi G, Lindquist Liljeqvist M, Sakalihasan N, Panuccio G, Hultgren R, Roy J. , et al. Local diameter, wall stress and thrombus thickness influence the local growth of abdominal aortic aneurysms. European Journal of Vascular and Endovascular Surgery 2015; 48: 349 . DOI: 10.1016/j.ejvs.2014.06.032
- 83 Roach MR, Burton AC. The reason for the shape of the distensibility curves of arteries. Can J Biochem Physiol 1957; 35: 681-690 . DOI: 10.1139/o57-080
- 84 Choke E, Cockerill G, Wilson WR, Sayed S, Dawson J, Loftus I. , et al. A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg 2005; 30: 227-244 . DOI: 10.1016/j.ejvs.2005.03.009
- 85 Rizzo RJ, McCarthy WJ, Dixit SN, Lilly MP, Shively VP, Flinn WR. , et al. Collagen types and matrix protein content in human abdominal aortic aneurysms. J Vasc Surg 1989; 10: 365-373 . DOI: 10.1016/0741-5214(89)90409-6
- 86 López-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol 1997; 150: 993-1007 . PMID: 9060837
- 87 Gasser TC. Bringing vascular biomechanics into clinical practice - Simulation-based decisions for elective abdominal aortic aneurysms repair. In: Lopez CL, Peña E. (editors), Patient-Specific Computational Modelling. Amsterdam, The Netherlands: Springer; 2012. DOI: 10.1007/978-94-007-4552-0_1