Yearb Med Inform 2014; 23(01): 154-162
DOI: 10.15265/IY-2014-0002
Original Article
Georg Thieme Verlag KG Stuttgart

IBM’s Health Analytics and Clinical Decision Support

M. S. Kohn
1   Jointly Health (formerly IBM Research)
,
J. Sun
2   College of Computing, Georgia Institute of Technology, Atlanta, Georgia (formerly IBM Research)
,
S. Knoop
3   IBM Almaden Research Center, San Jose, CA, USA
,
A. Shabo
4   Records of Health (formerly IBM Research), Haifa, Israel
,
B. Carmeli
5   IBM Haifa Research Lab, Haifa, Israel
,
D. Sow
6   IBM Watson Research Center, Yorktown Heights NY, USA
,
T. Syed-Mahmood
3   IBM Almaden Research Center, San Jose, CA, USA
,
W. Rapp
7   IBM Watson Solutions Development, Rochester MN, USA
› Author Affiliations
Further Information

Publication History

15 August 2014

Publication Date:
05 March 2018 (online)

Summary

Objectives: This survey explores the role of big data and health analytics developed by IBM in supporting the transformation of healthcare by augmenting evidence-based decision-making.

Methods: Some problems in healthcare and strategies for change are described. It is argued that change requires better decisions, which, in turn, require better use of the many kinds of healthcare information. Analytic resources that address each of the information challenges are described. Examples of the role of each of the resources are given.

Results: There are powerful analytic tools that utilize the various kinds of big data in healthcare to help clinicians make more personalized, evidenced-based decisions. Such resources can extract relevant information and provide insights that clinicians can use to make evidence-supported decisions. There are early suggestions that these resources have clinical value. As with all analytic tools, they are limited by the amount and quality of data.

Conclusion: Big data is an inevitable part of the future of healthcare. There is a compelling need to manage and use big data to make better decisions to support the transformation of healthcare to the personalized, evidence-supported model of the future. Cognitive computing resources are necessary to manage the challenges in employing big data in healthcare. Such tools have been and are being developed. The analytic resources, themselves, do not drive, but support healthcare transformation.

 
  • References

  • 1 Berwick D, Hackbarth A. Eliminating Waste in US Health Care. JAMA 2012; 307 (14) 1513-16.
  • 2 Lathem W. Individual Medicine. New Eng J Med 1968; 279 (01) 22-5.
  • 3 IBM.. Global Technology Outlook. 2012
  • 4 Deloitte.. Tech Trends 2014 Inspiring Disruption. Deloitte University Press; 2014
  • 5 McCall R, Franklin S. Cortical Learning Algorithms with Predictive Coding for a Systems-Level Cognitive Architecture. Second Annual Conference on Advances in Cognitive Systems Poster Collection 2013; 149-66.
  • 6 Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R. et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 2001; 98 (20) 11650-5.
  • 7 http://www.nlm.nih.gov/pubs/staffpubs/od/ocpl/library_booktrade_almanac_2012.html accessed Oct. 17, 2012
  • 8 Williamson JW, German PS, Weiss R, Skinner EA, Bowes F. 3rd. Health science information management and continuing education of physicians. A survey of U.S. primary care practitioners and their opinion leaders. Ann Intern Med 1989; 110 (02) 151-60.
  • 9 Ferrucci D, Levas A. et al. Watson: Beyond Jeopardy!, Artificial Intell. 2013 199–200 93-105.
  • 10 Lundsgaarde HP. Evaluating medical expert systems. Soc Sci Med 1987; 24 (10) 805-19.
  • 11 Leaper DJ, Horrocks JC, Staniland JR, De Dombal FT. Computer-assisted diagnosis of abdominal pain using “estimates” provided by clinicians. Br Med J 1972; 4 5836 350.
  • 12 Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HY, Chen R. et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012; 148 (06) 1293-307.
  • 13 Sun J, Wang F, Hu J, Edabollahi S. Supervised patient similarity measure of heterogeneous patient records. ACM SIGKDD Explorations Newsletter 2011; 14 (01) 16-24.
  • 14 Wang F, Sun J, Hu J, Ebadollahi S. iMet: Interactive Metric Learning in Healthcare Applications. SDM 2011: 944-55.
  • 15 Wang F, Sun J, Ebadollahi S. Integrating Distance Metrics Learned from Multiple Experts and its Application in Inter-Patient Similarity Assessment. SDM 2011: 59-70.
  • 16 Syeda-Mahmood T, Wang Q, Neillie P, Compas C, Beymer D. Discriminating normal and abnormal left ventricular shapes in four-chamber view 2D echocardiography. Proc. International Conference on Biomedical Imaging (ISBI); 2014
  • 17 Syeda-Mahmood T, Beymer D, Wang F, Mahmood A. Automatic selection of keyframes in angiography videos. Proc. International Conference on Pattern Recognition (ICPR); 2010
  • 18 Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. In: Colchester A, Delp SL. editors. Medical Image Computing and Computer-Assisted Interventation ł MICCAI98. Berlin: Springer-Verlag; 1998. P. 130-7.
  • 19 Wetterstrand KA. DNA sequencing costs: data from the NHGRI large-scale genome sequencing program; 2011. Available at www.genome.gov/sequencingcosts. Accessed July 2014
  • 20 National Center for Biotechnology Information, U.S.. National Library of Medicine. http://www.ncbi.nlm.nih.gov/nuccore
  • 21 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215 (03) 403-10.
  • 22 Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G. et al. De novo transcriptome assembly with ABySS. Bioinformatics 2009; 25 (21) 2872-7.
  • 23 Miller JR, Sergey K, Granger S. Assembly algorithms for next-generation sequencing data. Genomics 2010; 95 (06) 315-27.
  • 24 Graham RJ, Bellare P, DeRisi JL. PRICE: Software for the Targeted Assembly of Components of (Meta) Genomic Sequence Data. G3(Bethesda) 2013; 3 (05) 865-80.
  • 25 Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007; 449 7164 804-10.
  • 26 Tringe GS, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW. et al. Comparative metagenomics of microbial communities. Science 2005; 308 5721 554-7.
  • 27 Ansari S, Rashidian A. Guidelines for Guidelines: Are They Up to the Task? A Comparative Assessment of Clinical Practice Guideline Development Handbooks. PLoS One 2012; 7 (11) e49864. doi:10.1371/journal.pone.0049864
  • 28 Dreyer NA, Tunis SR, Berger M, Ollendorf D, Mattox P, Gliklich R. Why Observational Studies Should be Among the Tools Used in Comparative Effectiveness Research. Health Aff 2010; 29: 1818-25.
  • 29 Kawamoto K, Lobach DF, Willard HF, Ginsburg GS. A national clinical decision support infrastructure to enable the widespread and consistent practice of genomic and personalized medicine. BMC Med Inform Decis Mak 2009; 9: 17.
  • 30 Doroshow JH. Selecting Systemic Cancer Therapy One Patient at a Time: Is There a Role for Molecular Profiling of Individual Patients With Advanced Solid Tumors, Editorial. J Clin Oncol 2010; 28 (33) 4869-71.
  • 31 http://www.asco.org/quality-guidelines/cancerlinq Accessed May 8, 2014
  • 32 Rinott R, Carmeli B, Kent C, Landau D, Maman Y, Rubin Y. et al. Prognostic Data-Driven Clinical Decision Support - Formulation and Implications. Stud Health Technol Inform 2011; 169: 140-4.
  • 33 Carmeli B, Casali P, Goldbraich A, Goldsteen A, Kent C, Licitra L. et al. Evicase: An Evidence-Based Case Structuring Approach for Personalized Healthcare. Stud Health Technol Inform 2012; 180: 604-8.
  • 34 Blount M, Ebling M, Eklund M, James A, McGregor C, Percival N. Smith et al. Real-time analysis for intensive care: development and deployment of the artemis analytic system. IEEE Eng Med Biol Mag 2010; 29 (02) 110-8.
  • 35 Lake DE, Richman JS, Griffin P, Moorman R. Sample entropy analysis of neonatal heart rate variability. Am J Physiol 2002; 283: R789R797.
  • 36 Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete CT. et al. Mortality Reduction by Heart Rate Characteristic Monitoring in Very Low Birth Weight Neonates: A Randomized Trial. J Pediatr 2011; 159 (06) 900-6.
  • 37 McGregor C, James A, Eklund M, Sow D, Ebling M, Blount M. Real-time Multidimensional Temporal Analysis of Complex High Volume Physiological Data Streams in the Neonatal Intensive Care Unit. Stud Health Technol Inform 2013; 192: 362-6.
  • 38 Schmidt JM, Doerner J, Sow D, Perrote A, Mayer S. Bedside Application for Assessment of Cerebral Autoregulation and Patient State Changes. Neuro Critical Care Conference 2013
  • 39 Johnson A, Sow D, Biem A. A discriminative approach to EEG seizure detection. AMIA Annu Symp Proc 2011; 1309-17.
  • 40 Schmidt JM, Sow D, Agarwal S, Claassen J, Mayer S. Heart Rate Variability Monitoring for Early Detection of Secondary Complications after Subarachnoid Hemorrhage. Neuro Critical Care Conference 2013
  • 41 Sun J, Sow D, Hu J, Ebadollahi S. A system for mining temporal physiological data streams for advanced prognostic decision support. 10th IEEE International Conference on Data Mining 2010
  • 42 MIMIC (Multiparameter Intelligent Monitoring in Intensive Care). II Database [Online]. Available at http://physionet.org/physiobank/database/mimic2db/.
  • 43 Dwan K, Gamble C, Williamson PR, Kirkham JJ. for the Reporting Bias Group. Systematic Review of the Empirical Evidence of Study Publication Bias and Outcome Reporting Bias — An Updated Review. PLoS One 2013; 8 (07) e66844. doi:10.1371/journal.pone.0066844.
  • 44 Song F, Parekh-Bhurke S, Hooper L, Loke YK, Ryder JJ, Sutton AJ. et al. Extent of publication bias in different categories of research cohorts: a meta-analysis of empirical studies. BMC Med Res Methodol 2009; 9: 79. doi: 10.1186/1471-2288-9-79.
  • 45 Silver N. The Signal and the Noise. Penguin Press; 2012
  • 46 Marcus and Davis, NY Times Eight (No, Nine!) Problems With Big Data. New York Times; April 7, 2014
  • 47 Berner E, Graber M. Overconfidence as a cause of diagnostic error in medicine. Am J Med 2008; 121 5A S2-S23.
  • 48 Sahota N, Lloyd R, Ramakrishna A, Mackay JA, Prorok JC, Weise-Kelly L. et al; CCDSSystematic Review Team.. Computerized clinical decision support systems for acute care management: A decision-maker researcher partnership systematic review of effects on process of care and patient outcomes. Implementation Science 2011; 6: 91.
  • 49 Roshanov P, Misra S, Gerstein H. et al. Computerized clinical decision support systems for chronic disease management: A decision-maker researcher partnership systematic review. Implement Sci 2011; 6: 92.