Subscribe to RSS
DOI: 10.15265/IY-2014-0012
Challenges and Potential Solutions for Big Data Implementations in Developing Countries
Publication History
15 August 2014
Publication Date:
05 March 2018 (online)
Summary
Background: The volume of data, the velocity with which they are generated, and their variety and lack of structure hinder their use. This creates the need to change the way information is captured, stored, processed, and analyzed, leading to the paradigm shift called Big Data.
Objectives: To describe the challenges and possible solutions for developing countries when implementing Big Data projects in the health sector.
Methods: A non-systematic review of the literature was performed in PubMed and Google Scholar. The following keywords were used: “big data”, “developing countries”, “data mining”, “health information systems”, and “computing methodologies”. A thematic review of selected articles was performed.
Results: There are challenges when implementing any Big Data program including exponential growth of data, special infrastructure needs, need for a trained workforce, need to agree on interoperability standards, privacy and security issues, and the need to include people, processes, and policies to ensure their adoption. Developing countries have particular characteristics that hinder further development of these projects.
Conclusions: The advent of Big Data promises great opportunities for the healthcare field. In this article, we attempt to describe the challenges developing countries would face and enumerate the options to be used to achieve successful implementations of Big Data programs.
-
References
- 1 Jee K, Kim G-H. Potentiality of Big Data in the Medical Sector: Focus on How to Reshape the Healthcare System. Healthc Inform Res 2013; Jun 19 (Suppl. 02) 79-85.
- 2 Ohlhorst FJ. Big Data Analytics: Turning Big Data Into Big Money. John Wiley & Sons; 2012
- 3 Ouellette J. Scientific Data Has Become So Complex, We Have to Invent New Math to Deal With It [Internet]. Wired Science. [cited 2013 Dec 10]. Available from: http://www.wired.com/wiredscience/2013/10/topology-data-sets/
- 4 Ghemawat S, Gobioff H, Leung S-T. The Google file system. SOSP ‘03 Proceedings of the nineteenth ACM symposium on Operating systems principles; 2003 p. 29-43.
- 5 Melnik S, Gubarev A, Long JJ, Romer G, Shivakumar S, Tolton M. et al. Dremel: interactive analysis of web-scale datasets. Proc VLDB Endow 2010; 3 1-2 330-9.
- 6 Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ. et al. Spanner: Google’s globally-distributed database. Proceedings of OSDI. California, United Sates: USENIX Association; 2012. p. 251-64.
- 7 Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M. et al. Bigtable: A distributed storage system for structured data. ACM Trans Comput Syst TOCS 2008; 26 (Suppl. 02) 4.
- 8 Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM 2008; 51 (Suppl. 01) 107-13.
- 9 Burghard C. Big Data and Analytics Key to Accountable Care Success [Internet]. IDC Health Insights; 2012. Available from: http://www-01.ibm. com/common/ssi/cgi-bin/ssialias?infotype=SA&-subtype=WH&htmlfid=IML14338USEN
- 10 Charles D, Furukawa M, Hufstader M. Electronic Health Record Systems and Intent to Attest to Meaningful Use Among Non-federal Acute Care Hospitals in the United States: 2008-2011. ONC Data Brief 2012; 1: 1-7.
- 11 Murdoch TB, Detsky AS. The Inevitable Application of Big Data to Health Care. JAMA 2013; 309 (Suppl. 13) 1351-2.
- 12 Chawla NV, Davis DA. Bringing Big Data to Personalized Healthcare: A Patient-Centered Framework. J Gen Intern Med 2013 Jun 25 28 S3 660-5.
- 13 Bourne PE. What Big Data means to me. J Am Med Inform Assoc 2014 Mar 1 21 (Suppl. 02) 194.
- 14 Ward JS, Barker A. Undefined By Data: A Survey of Big Data Definitions. ArXiv Prepr ArXiv13095821 [Internet]. 2013 [cited 2014 Mar 28]; Available at: http://arxiv.org/abs/1309.5821
- 15 Villars RL, Olofson CW, Eastwood M. Big data: What it is and why you should care [Internet]. IDC; 2011 [cited 2013 Dec 10]. Available at: http://sites.amd.com/us/Documents/IDC_AMD_Big_Data_Whitepaper.pdf
- 16 Diebold F. On the Origin (s) and Development of the Term’Big Data’ [Internet]. Penn Institute for Economic Research; 2012 [cited 2013 Dec 19]. Available at: http://economics.sas.upenn.edu/pier/working-paper/2012/origins-and-development-term-%E2%80%9Cbig-data
- 17 Laney D. 3D Data Management: Controlling Data Volume, Velocity, and Variety [Internet]. META Group; 2001 Feb. Available at: http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
- 18 Schroeck M, Shockley R, Smart J, Romero-Morales D, Tufano P. Analytics The real-world use of big data [Internet]. IBM Institute for Business Value; 2012 Available at: http://www-935.ibm.com/services/us/gbs/thoughtleadership/ibv-big-data-at-work.html
- 19 Evelson B, Nicolson N. Topic Overview: Business Intelligence – An Information Workplace Report [Internet]. Forrester Research. 2008 [cited 2013 Dec 16]. Available at: www.forrester.com/Topic+Overview+Business+Intelligence/-/E-RES39218?objectid=RES39218
- 20 Core Techniques and Technologies for Advancing Big Data Science & Engineering (BIGDATA) [Internet].. National Science Foundation; 2012. Available at: http://www.nsf.gov/pubs/2012/ nsf12499/nsf12499.pdf
- 21 MD Anderson Taps IBM Watson to Power “Moon Shots” Mission [Internet].. MD Anderson Cancer Center. 2013 [cited 2013 Dec 17]. Available at: http://www.mdanderson.org/newsroom/news-releases/2013/ibm-watson-to-power-moon-shots-.html
- 22 Okun S, McGraw D, Stang P, Larson E, Gold-mann D, Kupersmith J. Making the Case for Continuous Learning from Routinely Collected Data [Internet]. IOM; 2013 Available at: www.iom.edu/~/media/Files/Perspectives-Files/2013/Discussion-Papers/VSRT-MakingtheCase.pdf
- 23 Davis DA, Chawla NV, Blumm N, Christakis N, Barabasi A-L. Predicting individual disease risk based on medical history. Proceedings of the 17th ACM conference on Information and knowledge management. ACM; 2008 p. 769-78.
- 24 Davis DA, Chawla NV, Christakis NA, Barabási A-L. Time to CARE: a collaborative engine for practical disease prediction. Data Min Knowl Discov 2010; 20 (Suppl. 03) 388-415.
- 25 Asangansi I, Braa K. The emergence of mobile-supported national health information systems in developing countries. Stud Health Technol Inf 2010; 160 Pt 1 540-4.
- 26 Lewis T, Synowiec C, Lagomarsino G, Schweitzer J. E-health in low- and middle-income countries: Findings from the center for health market innovations. Bull World Health Organ 2012; 90 (Suppl. 05) 332-40.
- 27 Big Data for Development: Challenges & Opportunities [Internet].. UN Global Pulse; 2012. Available at: http://www.unglobalpulse.org/sites/default/files/BigDataforDevelopment-UNGlobalPulseJune2012.pdf
- 28 Barrington J, Wereko-Brobby O, Ward P, Mwafongo W, Kungulwe S. SMS for Life: a pilot project to improve anti-malarial drug supply management in rural Tanzania using standard technology. Malar J 2010 Oct 27 9 (Suppl. 01) 298.
- 29 Novartis Malaria Initiative: SMS for Life [Internet].. [cited 2014 Mar 27]. Available at: www.malaria.novartis.com/innovation/sms-for-life
- 30 Hilbert M. Big Data for Development: From Information-to Knowledge Societies. Univ South Calif - Annenberg Sch Commun [Internet]. 2013; Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2205145
- 31 Barroso LA, Hölzle U. The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines. Synth Lect Comput Archit 2009; Jan 4 (Suppl. 01) 1-108.
- 32 Shapiro C, Varian HR. Information rules: a strategic guide to the network economy. Boston, Mass.: Harvard Business School Press; 1999
- 33 Infrastructure as a Service (IaaS) [Internet].. Gartner IT Glossary. [cited 2013 Dec 10]. Available at: http://www.gartner.com/it-glossary/infrastructure-as-a-service-iaas
- 34 Latourette MT, Siebert JE, Barto Jr. RJ, Marable KL, Muyepa A, Hammond CA. et al. Magnetic resonance imaging research in sub-Saharan Africa: Challenges and satellite-based networking implementation. J Digit Imaging 2011; 24 (Suppl. 04) 729-38.
- 35 Shiferaw F, Zolfo M. The role of information communication technology (ICT) towards universal health coverage: The first steps of a tele-medicine project in Ethiopia. Glob Health Action 2012; 5 (Suppl. 01) 15.
- 36 Simba DO. Application of ICT in strengthening health information systems in developing countries in the wake of globalisation. Afr Health Sci 2004; Dec 4 (Suppl. 03) 194-8.
- 37 Gardiner B. Astrophysicist Replaces Supercomputer with a Cluster of Eight PlayStation 3s [Internet]. WIRED. 2007 [cited 2013 Dec 10]. Available at: http://www.wired.com/techbiz/it/news/2007/10/ps3_supercomputer
- 38 Zyga L. US Air Force connects 1,760 PlayStation 3’s to build supercomputer [Internet]. PhysOrg. 2010 [cited 2013 Dec 10]. Available at: http://phys.org/news/2010-12-air-playstation-3s-super-computer.html
- 39 Amazon Web Services [Internet].. Amazon. [cited 2013 Dec 10]. Available at: aws.amazon.com
- 40 Google Compute Engine [Internet].. Google Cloud Platform. [cited 2013 Dec 10]. Available at: cloud.google.com/products/compute-engine
- 41 Purkayastha S, Braa J. Big Data Analytics for developing countries–Using the Cloud for Operational BI in Health. Electron J Inf Syst Dev Ctries [Internet]. 2013 [cited 2014 Mar 25];59. Available at: https://ejisdc.org/ojs2/index.php/ejisdc/article_view/1220
- 42 Apache Hadoop [Internet].. Hadoop. [cited 2013 Dec 10]. Available at: http://hadoop.apache.org
- 43 Lohr S. For Today’s Graduate, Just One Word: Statistics. The New York Times [Internet]. 2009 Aug 6 [cited 2013 Dec 10]; Available at: www.nytimes.com/2009/08/06/technology/06stats/nytimes.com/2009/08/06/technology/06stats.html?_r=3&
- 44 Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C. et al. Big data: The next frontier for innovation, competition, and productivity [Internet]. McKinsey Global Institute 2011 Available at: http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
- 45 Competitions | Kaggle [Internet].. [cited 2014 Mar 27]. Available at: https://www.kaggle.com/solutions/competitions
- 46 DataKind | DataKind [Internet].. [cited 2014 Mar 27]. Available at: http://www.datakind.org
- 47 Hammond WE, Bailey C, Boucher P, Spohr M, Whitaker P. Connecting Information To Improve Health. Health Aff (Millwood) 2010 Feb 1 29 (Suppl. 02) 284-8.
- 48 Searching for standards in big data [Internet].. FCW; 2012 [cited 2013 Dec 17]. Available at: http://fcw.com/microsites/2012/snapshot-managing-big-data/05-establishing-big-data-stan-dards.aspx
- 49 Glaser J. Interoperability: the key to breaking down information silos in health care. Healthc Financ Manage 2011; Nov 65 (Suppl. 11) 44-6 48, 50.
- 50 Luna D, García M, Nishioka A, Franco M. OPS - Revisión de estándares de interoperabilidad para la e-salud en latinoamérica y el caribe. In Press. 2013
- 51 Country health information systems: a review of the current situation and trends [Internet].. Geneva: World Health Organization; 2011 [cited 2013 Nov 1]. Available at: http://www.who.int/healthmetrics/news/chis_report.pdf
- 52 National eHealth strategy toolkit.. [Internet]. World Health Organization and International Telecommunication Union. 2012 Available at: http://www.itu.int/pub/D-STR-E_HEALTH.05-2012/
- 53 Committee on the Role of Institutional Review Boards in Health Services Research Data Privacy Protection.. I of M. Protecting data privacy in health services research [Internet]. National Academies Press.; 2000 Available at: www.nap.edu/openbook.php?isbn=0309071879
- 54 Meslin EM. Shifting Paradigms in Health Services Research Ethics. J Gen Intern Med 2006; Mar 21 (Suppl. 03) 279-80.
- 55 Summary of the HIPAA Security Rule [Internet].. HHS. [cited 2013 Dec 17]. Available at: www.hhs.gov/ocr/privacy/hipaa/understanding/ srsummary.html
- 56 Summary of the HIPAA Privacy Rule [Internet].. HHS. [cited 2013 Dec 17]. Available at: www.hhs.gov/ocr/privacy/hipaa/understanding/summary/index.html
- 57 Campbell AV. The Ethical Challenges of Genetic Databases: Safeguarding Altruism and Trust. Kings Law J 2007 Jan 1 18 (Suppl. 02) 227-45.
- 58 Chalmers D, Nicol D. Commercialisation of biotechnology: public trust and research. Int J Biotechnol 2004 Jan 1 6 (Suppl. 02) 116-33.
- 59 Michele O, Fernandes L, Weaver V. Big Data, Bigger Outcomes. J AHIMA 2012; 83 (Suppl. 10) 38-43.
- 60 Shariff SZ, Bejaimal SA, Sontrop JM, Iansavichus AV, Haynes RB, Weir MA. et al. Retrieving clinical evidence: a comparison of PubMed and Google Scholar for quick clinical searches. J Med Internet Res 2013; 15 (Suppl. 08) e164.
- 61 Big Data for Development: a primer.. Harnessing Big Data For Real-Time Awareness [Internet]. UN Global Pulse; 2013. Available at: www.unglobalpulse.org/sites/default/files/Primer%20/2013_FINAL%20FOR%20PRINT.pdf
- 62 Vital Wave Consulting.. Big Data, Big Impact: New Possibilities for International Development [Internet]. World Economic Forum; 2012. Available at: http://www3.weforum.org/docs/WEF_TC_MFS_BigDataBigImpact_Briefing_2012.pdf
- 63 New Data for Understanding the Human Condition: International Perspectives [Internet].. OECD; 2013. Available at: http://www.oecd.org/sti/scitech/new-data-for-understanding-the-human-condition.pdf