Yearb Med Inform 2014; 23(01): 52-54
DOI: 10.15265/IY-2014-0013
Original Article
Georg Thieme Verlag KG Stuttgart

Reuse Of Clinical Data

C. Safran
1   Division of Clinical Informatics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
› Author Affiliations
Further Information

Publication History

15 August 2014

Publication Date:
05 March 2018 (online)

Summary

Objectives: To provide an overview of the benefits of clinical data collected as a by-product of the care process, the potential problems with large aggregations of these data, the policy frameworks that have been formulated, and the major challenges in the coming years.

Methods: This report summarizes some of the major observations from AMIA and IMIA conferences held on this admittedly broad topic from 2006 through 2013. This report also includes many unsupported opinions of the author.

Results: The benefits of aggregating larger and larger sets of routinely collected clinical data are well documented and of great societal benefit. These large data sets will probably never answer all possible clinical questions for methodological reasons. Non-traditional sources of health data that are patient-sources will pose new data science challenges.

Conclusions: If we ever hope to have tools that can rapidly provide evidence for daily practice of medicine we need a science of health data perhaps modeled after the science of astronomy.

 
  • References

  • 1 Guyatt G, Cairns J, Churchill D, Cook D, Haynes B, Hirsh J, Irvine J. et al. Evidence-based medicine. JAMA 1992; 2420-25.
  • 2 Safran C. Medicine based upon data. (Editorial) J Gen Intern Med 2013; Dec 28 (12) 1545-6.
  • 3 McDonald CJ, Hui SL. The analysis of humongous databases: problems and promises. Stat Med 1991; Apr 10 (04) 511-8.
  • 4 Smith DM. Database research: is happiness a humongous database?. Ann Intern Med 1997; Oct 15 127 8 Pt 2 725.
  • 5 Starmer CF, Rosati RA, McNeer JF. Data bank use in management of chronic disease. Comput Biomed Res 1974; Apr 7 (02) 111-6.
  • 6 Fries JF, McShane D. ARAMIS: a national chronic disease data bank system. In: Proceedings of the Ann Symp on Comp App in Med Care. 1979: 798-801.
  • 7 Safran C. Using routinely collected data for clinical research. Stat Med 1991; Apr 10 (04) 559-64.
  • 8 Phillips RS, Safran C, Cleary PD, Delbanco TL. Emergency readmission for patients discharged from the medical service of a teaching hospital. J Gen Int Med 1987; 2: 400-5.
  • 9 Herrmann FR, Safran C, Levkoff SE, Minaker KL. Serum albumin on admission as a predictor of death, length of stay, and readmission. Arch Intern Med 1992; 152: 125-30.
  • 10 Herrmann FR, Safran C. Real-time exploration of routinely collected data: an analysis of admissions for AIDS in a teaching hospital. Medinfo 1992, Proceedings of the Seventh World Conference on Medical Informatics. 1992; 878-82.
  • 11 Hansell A, Hollowell J, Nichols T, McNiece R, Strachan D. Use of the General Practice Research Database (GPRD) for respiratory epidemiology: a comparison with the 4th Morbidity Survey in General Practice (MSGP4). Thorax 1999; May 54 (05) 413-9.
  • 12 Classen DC, Burke JP. The computer-based patient record: the role of the hospital epidemiologist. Infect Control Hosp Epidemiol 1995; 16 (12) 729-36.
  • 13 Evans RS, Burke JP, Classen DC, Gardner RM, Menlove RL, Goodrich KM. et al. Computerized identification of patients at high risk for hospital-acquired infection. Am J Infect Control 1992; 20 (01) 4-10.
  • 14 Chizzali-Bonfadin C, Adlassnig KP, Koller W. MONI: an intelligent database and monitoring system for surveillance of nosocomial infections. Medinfo 1995; 8: 1684.
  • 15 Kahn MG, Steib SA, Fraser VJ, Dunagan WC. An expert system for culture-based infection control surveillance. Proc Annu Symp Comput Appl Med Care 1993; 171-5.
  • 16 Pittet D, Safran E, Harbarth S, Borst F, Copin P, Rohner P. et al. Automatic alerts for methicillin-resistant Staphylococcus aureus surveillance and control: role of a hospital information system. Infect Control Hosp Epidemiol 1996; 17 (08) 496-502.
  • 17 Samore M, Lichtenberg D, Saubermann L, Kawachi C, Carmeli Y. A clinical data repository enhances hospital infection control. Proc AMIA Annu Fall Symp 1997; 56-60.
  • 18 Geva A, Wright SB, Baldini LM, Smallcomb JA, Safran C, Gray JE. Spread of methicillin-resistant Staphylococcus aureus in a large tertiary NICU: network analysis. Pediatrics 2011; 128: e1173-80.
  • 19 Chalasani N, Aljadhey H, Kesterson J, Murray MD, Hall SD. Patients with Elevated Liver Enzymes are Not at Higher Risk for Statin Hepatotoxicity. Gastroenterology 2004; 126 (05) 1287-92.
  • 20 Herzig SJ, Howell MD, Ngo LH, Marcantonio ER. Acid-suppressive medication use and the risk for hospital-acquired pneumonia. JAMA 2009; 301 (20) 2120-8.
  • 21 Safran C, Porter D, Lightfoot J, Rury CD, Underhill LH, Bleich HL. et al. ClinQuery: a system for online searching of data in a teaching hospital. Ann Intern Med 1989; 111 (09) 751-6.
  • 22 Walley T, Mantgani A. The UK general practice research database. Lancet 1997; Oct 11 350(9084) 1097-9
  • 23 Brown SH, Lincoln MJ, Groen PJ, Kolodner RM. VistA—US Department of Veterans Affairs national-scale HIS. Int J Med Inform 2003; 69 (02) 135-56.
  • 24 Danforth K, Patnode CD, Kapka TJ, Butler MG, Collins B, Compton-Phillips A. Comparative Effectiveness Topics from a Large, Integrated Delivery System. Perm J 2013; Fall 17 (04) 4-13.
  • 25 Nigrin DJ, Kohane IS. Temporal expressiveness in querying a timestamp-based clinical database. J Am Med Inform Assoc 2000; 7 (02) 152-63.
  • 26 Nigrin DJ, Kohane IS. Data mining by clinicians. Proc AMIA Symp 1998; 957-61.
  • 27 Nigrin DJ, Kohane IS. Scaling a data retrieval and mining application to the enterprise-wide level. Proc AMIA Symp 1999; 901-5.
  • 28 McDonald CJ, Dexter P, Schadow G, Chueh HC, Abernathy G, Hook J. et al. SPIN query tools for de-identified research on a humongous database. AMIA Annu Symp Proc 2005; 515-9.
  • 29 Weber GM, Murphy SN, McMurry AJ, Macfadden D, Nigrin DJ, Churchill S. et al. The Shared Health Research Information Network (SHRINE): a prototype federated query tool for clinical data repositories. J Am Med Inform Assoc 2009; SepOct 16 (05) 624-30.
  • 30 Murphy SN, Weber G, Mendis M, Gainer V, Chueh HC, Churchill S. et al. Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). J Am Med Inform Assoc 2010; Mar-Apr 17 (02) 124-30.
  • 31 http://aramis.stanford.edu (accessed 4/1/2014)
  • 32 Trouble at the Lab: Unreliable Research. Economist October 2013
  • 33 Safran C, Bloomrosen M, Hammond WE, Labkoff S, Markel-Fox S, Tang PC. et al. Toward a national framework for the secondary use of health data: an American Medical Informatics Association white paper. J Am Med Inform Assoc 2007; 14: 1-9.
  • 34 Hripcsak G, Bloomrosen M, Brennan P, Chute CG, Cimino J, Detmer DE. et al. Health data use, stewardship, and governance: ongoing gaps and challenges: a report from AMIA’s 2012 Health Policy Meeting. J Am Med Inform Assoc. 2013 Oct 29. doi: 10.1136/amiajnl-2013-002117.
  • 35 Geissbuhler A, Safran C, Buchan I, Bellazzi R, Labkoff S, Eilenberg K. et al. Trustworthy reuse of health data: a transnational perspective. Int J Med Inform 2013; 82: 1-9.
  • 36 Bellazzi R, Buchan IE, Labkoff SE, Geissbuhler A, Safran C. The IMIA initiatives on trustworthy reuse of health data: A report. Stud Health Technol Inform 2013; 192: 1231.
  • 37 Etheredge LM. A rapid-learning health system. Health Aff (Millwood) 2007; MarApr 26 (02) w107-18.