Yearb Med Inform 2014; 23(01): 27-35
DOI: 10.15265/IY-2014-0016
Original Article
Georg Thieme Verlag KG Stuttgart

Big Data Usage Patterns in the Health Care Domain: A Use Case Driven Approach Applied to the Assessment of Vaccination Benefits and Risks

Contribution of the IMIA Primary Healthcare Working Group
H. Liyanage
1   Clinical Informatics & Health Outcomes research group, Department of Health Care Policy and Management, University of Surrey, Guildford, Surrey, UK
,
S. de Lusignan
1   Clinical Informatics & Health Outcomes research group, Department of Health Care Policy and Management, University of Surrey, Guildford, Surrey, UK
,
S-T. Liaw
2   School of Public Health & Community Medicine, UNSW Medicine Australia, NSW, Australia
,
C. Kuziemsky
3   Telfer School of Management, University of Ottawa, Ottawa, Ontario, Canada
,
F. Mold
1   Clinical Informatics & Health Outcomes research group, Department of Health Care Policy and Management, University of Surrey, Guildford, Surrey, UK
,
P. Krause
4   Department of Computing, University of Surrey, Guildford, Surrey, UK
,
D. Fleming
1   Clinical Informatics & Health Outcomes research group, Department of Health Care Policy and Management, University of Surrey, Guildford, Surrey, UK
,
S. Jones
1   Clinical Informatics & Health Outcomes research group, Department of Health Care Policy and Management, University of Surrey, Guildford, Surrey, UK
› Institutsangaben
Weitere Informationen

Publikationsverlauf

15. August 2014

Publikationsdatum:
05. März 2018 (online)

Summary

Background: Generally benefits and risks of vaccines can be determined from studies carried out as part of regulatory compliance, followed by surveillance of routine data; however there are some rarer and more long term events that require new methods. Big data generated by increasingly affordable personalised computing, and from pervasive computing devices is rapidly growing and low cost, high volume, cloud computing makes the processing of these data inexpensive.

Objective: To describe how big data and related analytical methods might be applied to assess the benefits and risks of vaccines. Method: We reviewed the literature on the use of big data to improve health, applied to generic vaccine use cases, that illustrate benefits and risks of vaccination. We defined a use case as the interaction between a user and an information system to achieve a goal. We used flu vaccination and pre-school childhood immunisation as exemplars.

Results: We reviewed three big data use cases relevant to assessing vaccine benefits and risks: (i) Big data processing using crowd-sourcing, distributed big data processing, and predictive analytics, (ii) Data integration from heterogeneous big data sources, e.g. the increasing range of devices in the “internet of things”, and (iii) Real-time monitoring for the direct monitoring of epidemics as well as vaccine effects via social media and other data sources.

Conclusions: Big data raises new ethical dilemmas, though its analysis methods can bring complementary real-time capabilities for monitoring epidemics and assessing vaccine benefit-risk balance.

 
  • References

  • 1 Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation computer systems 2009; 25 (Suppl. 06) 599-616.
  • 2 IBM - Bringing big data to the enterprise - What is big data? - Australia. 2013 IBM - Bringing big data to the enterprise - What is big data? - Australia. [ONLINE] Available at: http://www-01.ibm.com/software/au/data/bigdata/. [Accessed 29 December 2013]
  • 3 Ward JS, Barker A. Undefined By Data: A Survey of Big Data Definitions. 2013: 1309-5821
  • 4 IBM.. The Big Data and Analytics Hub. URL: http://www.ibmbigdatahub.com/infographic/four-vs-big-data
  • 5 Dong X, Bahroos N, Sadhu E, Jackson T, Chukhman M, Johnson R, Boyd A, Hynes D. Leverage Hadoop Framework for Large Scale Clinical Informatics Applications. AMIA Summits Transl Sci Proc 2013; 2013: 53.
  • 6 Demchenko Y, Grosso P, de Laat C, Membrey P. Addressing Big Data Issues in Scientific Data Infrastructure. Proceedings of International Conference on Collaboration Technologies and Systems 2013; 48-55.
  • 7 Neff G. Why Big Data Won’t Cure Us. Big Data 2013; 1 (Suppl. 03) 117-23.
  • 8 Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA 2013; 309 (Suppl. 13) 1351-2.
  • 9 Wordle Word Clouds.. URL: http://www.wordle.net
  • 10 Leffingwell D, Widrig D. Managing software requirements: a use case approach. Addison-Wesley Professional; 2003
  • 11 de Lusignan S, Cashman J, Poh N, Michalakidis G, Mason A, Desombre T. et al. Conducting requirements analyses for research using routinely collected health data: a model driven approach. Stud Health Technol Inform 2012; 180: 1105-7.
  • 12 Leppenwell E, de Lusignan S, Vicente MT, Michalakidis G, Krause P, Thompson S. et al. Developing a survey instrument to assess the readiness of primary care data, genetic and disease registries to conduct linked research: TRANSFoRm International Research Readiness (TIRRE) survey instrument. Inform Prim Care 2012; 20 (Suppl. 03) 207-16.
  • 13 Regnell B, Andersson M, Bergstrand J. A hierarchical use case model with graphical representation. In: Engineering of Computer-Based Systems, 1996. Proceedings., IEEE Symposium and Workshop. IEEE 1997; 270-7.
  • 14 Fleming DM, Miles J. The representativeness of sentinel practice networks. J Public Health (Oxf) 2010; 32 (Suppl. 01) 90-6.
  • 15 Fleming DM, Elliot AJ. Lessons from 40 years’ surveillance of influenza in England and Wales. Epidemiol Infect 2008; Jul 136 (Suppl. 07) 866-75.
  • 16 Pebody R, Andrews N, McMenamin J, Durnall H, Ellis J, Thompson CI. et al. Vaccine effectiveness of 2011/12 trivalent seasonal influenza vaccine in preventing laboratory-confirmed influenza in primary care in the United Kingdom: evidence of waning intra-seasonal protection. Euro Surveill 2013 Jan 31 18. 05
  • 17 Fleming DM, Andrews NJ, Ellis JS, Bermingham A, Sebastianpillai P, Elliot AJ. et al. Estimating influenza vaccine effectiveness using routinely collected laboratory data. J Epidemiol Community Health 2010; Dec 64 (Suppl. 12) 1062-7.
  • 18 Fleming DM, Verlander NQ, Elliot AJ, Zhao H, Gelb D, Jehring D. et al. An assessment of the effect of statin use on the incidence of acute respiratory infections in England during winters 1998-1999 to 2005-2006. Epidemiol Infect 2010; Sep 138 (Suppl. 09) 1281-8.
  • 19 Polakowski LL, Sandhu SK, Martin DB, Ball R, Macurdy TE, Franks RL. et al. Chart-confirmed guillain-barre syndrome after 2009 H1N1 influenza vaccination among the Medicare population, 2009-2010. Am J Epidemiol 2013; 178 (Suppl. 06) 962-73.
  • 20 Dodd CN, Romio SA, Black S, Vellozzi C, Andrews N, Sturkenboom M. et al Global H1N1 GBS Consortium. International collaboration to assess the risk of Guillain Barré Syndrome following Influenza A. (H1N1) 2009 monovalent vaccines. Vaccine 2013 Sep 13 31 (Suppl. 40) 4448-58.
  • 21 Huang WT, Chang CH, Peng MC. Telephone monitoring of adverse events during an MF59®-adjuvanted H5N1 influenza vaccination campaign in Taiwan. Hum Vaccin Immunother. 2014; Jan 10 (Suppl. 01) 100-3.
  • 22 Parrella A, Gold M, Braunack-Mayer A, Baghurst P, Marshall H. Consumer reporting of adverse events following immunization (AEFI): Identifying predictors of reporting an AEFI. Hum Vaccin Immunother 2014 Jan 9; 10. 03
  • 23 Ackerson BK, Sy LS, Yao JF, Craig Cheetham T, Espinosa-Rydman AM, Jones TL. et al. Agreement between medical record and parent report for evaluation of childhood febrile seizures. Vaccine 2013 Jun 12 31 (Suppl. 27) 2904-9.
  • 24 Newman HB, Ellisman MH, Orcutt JA. Data-intensive e-science frontier research. Communications of the ACM 2003; 46 (Suppl. 11) 68-77.
  • 25 Müller H, Hanbury A, Al Shorbaji N. Health information search to deal with the exploding amount of health information produced. Methods Inf Med 2012 Dec 4 51 (Suppl. 06) 516-8.
  • 26 Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP. Computational solutions to large-scale data management and analysis. Nat Rev Genet 2010; Sep 11 (Suppl. 09) 647-57.
  • 27 Sahoo SS, Jayapandian C, Garg G, Kaffashi F, Chung S, Bozorgi A. et al. Heart beats in the cloud: distributed analysis of electrophysiological ‘big data’ using cloud computing for epilepsy clinical research. J Am Med Inform Assoc 2014; MarApr 21 (Suppl. 02) 263-71.
  • 28 Narula J. Are We Up to Speed?: From Big Data to Rich Insights in CV Imaging for a Hyperconnected World. JACC Cardiovasc Imaging 2013; Nov 6 (Suppl. 11) 1222-4.
  • 29 Mudunuri US, Khouja M, Repetski S, Venkataraman G, Che A, Luke BT. et al. Knowledge and Theme Discovery across Very Large Biological Data Sets Using Distributed Queries: A Prototype Combining Unstructured and Structured Data. 2013 Dec 2 8 (Suppl. 12) e80503.
  • 30 Simpson SE, Madigan D, Zorych I, Schuemie MJ, Ryan PB, Suchard MA. Multiple self-controlled case series for large-scale longitudinal observational databases. Biometrics 2013; Dec 69 (Suppl. 04) 893-902.
  • 31 Fox B. Using big data for big impact. How predictive modeling can affect patient outcomes. Health Manag Technol 2012; Jan 33 (Suppl. 01) 32.
  • 32 Fox B. Using big data for big impact. Leveraging data and analytics provides the foundation for rethinking how to impact patient behavior. Health Manag Technol 2011; Nov 32 (Suppl. 11) 16.
  • 33 de Lissovoy G. Big data meets the electronic medical record: a commentary on “identifying patients at increased risk for unplanned readmission”. Med Care 2013; Sep 51 (Suppl. 09) 759-60.
  • 34 Choi M, Lee J, Ahn MJ, Kim Y. Nursing critical patient severity classification system predicts outcomes in patients admitted to surgical intensive care units: use of data from clinical data repository. Stud Health Technol Inform 2013; 192: 1063.
  • 35 Celi LA, Mark RG, Stone DJ, Montgomery RA. “Big data” in the intensive care unit. Closing the data loop. Am J Respir Crit Care Med 2013 Jun 1 187 (Suppl. 11) 1157-60.
  • 36 Mavandadi S, Dimitrov S, Feng S, Yu F, Yu R, Sikora U. et al. Crowd-sourced BioGames: managing the big data problem for next-generation lab-on-a-chip platforms. Lab Chip 2012 Oct 21 12 (Suppl. 20) 4102-6.
  • 37 Bushman FD, Barton S, Bailey A, Greig C, Malani N, Bandyopadhyay S. et al. Bringing it all together: big data and HIV research. AIDS 2013 Mar 13 27 (Suppl. 05) 835-8.
  • 38 Krammer F, Palese P. Universal influenza virus vaccines: need for clinical trials. Nat Immunol 2013 Dec 18 15 (Suppl. 01) 3-5.
  • 39 Racaniello V. Virology blog. http://www.virology.ws/2010/12/09/pandemic-influenza-vaccine-was-too-late-in-2009 (9 December 2010).
  • 40 Hung CL, Lin CY. Open reading frame phylo-genetic analysis on the cloud. Int J Genomics 2013; 2013: 614923.
  • 41 Radenski A, Ehwerhemuepha L. Speeding-up codon analysis on the cloud with local MapReduce aggregation. Information Sciences 2013
  • 42 Eggleston M, Grefenstette J, Burke D. Using big data for computational modeling of infectious IMIA Yearbook of Medical Informatics 2014 diseases. In: 141st APHA Annual Meeting, 2013; 276179. URL: https://apha.confex.com/apha/141am/webprogram/Paper276179.html
  • 43 Liyanage H, Liaw ST, Kuziemsky C, Terry AL, Jones S, Soler JK. et al. The Evidence-base for Using Ontologies and Semantic Integration Methodologies to Support Integrated Chronic Disease Management in Primary and Ambulatory Care: Realist Review. Contribution of the IMIA Primary Health Care Informatics WG. Yearb Med Inform 2013; 8 (Suppl. 01) 147-54.
  • 44 Seth Grimes, “Unstructured Data and the 80 Percent Rule: Investigating the 80%”. Clarabridge, Bridgepoints: 2008 Q3.
  • 45 Green DE, Rapp EJ. Can big data lead us to big savings?. Radiographics 2013; May 33 (Suppl. 03) 859-60.
  • 46 Leduc R, Vaughn M, Fonner JM, Sullivan M, Williams JG, Blood PD. et al. Leveraging the national cyberinfrastructure for biomedical research. J Am Med Inform Assoc 2014; Mar-Apr 21 (Suppl. 02) 195-9.
  • 47 Morita M, Igarashi Y, Ito M, Chen YA, Nagao C, Sakaguchi Y. et al. Sagace: a web-based search engine for biomedical databases in Japan. BMC Res Notes 2012 Oct 31 5: 604.
  • 48 Mohr DC, Burns MN, Schueller SM, Clarke G, Klinkman M. Behavioral Intervention Technologies: evidence review and recommendations for future research in mental health. Gen Hosp Psychiatry 2013; Jul-Aug 35 (Suppl. 04) 332-8.
  • 49 Robbins DE, Grüneberg A, Deus HF, Tanik MM, Almeida JS. A self-updating road map of The Cancer Genome Atlas. Bioinformatics 2013 May 15 29 (Suppl. 10) 1333-40.
  • 50 Eysenbach G. Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J Med Internet Res 2009 Mar 27 11 (Suppl. 01) e11.
  • 51 Salathé M, Khandelwal S. Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control. PLoS Comput Biol 2011; Oct 7 (Suppl. 10) e1002199.
  • 52 Baker MA, Nguyen M, Cole DV, Lee GM, Lieu TA. Post-licensure rapid immunization safety monitoring program (PRISM) data characterization. Vaccine 2013; Dec 30 31 Suppl 10: K98-K112.
  • 53 Espino JU, Hogan WR, Wagner MM. Telephone triage: a timely data source for surveillance of influenza-like diseases. AMIA Annu Symp Proc 2003; 215-9.
  • 54 Gross PA, Hermogenes AW, Sacks HS, Lau J, Levandowski RA. The efficacy of influenza vaccine in elderly persons. A meta-analysis and review of the literature. Ann Intern Med 1995; 123 (Suppl. 07) 518-27.
  • 55 Jefferson T, Rivetti D, Rivetti A, Rudin M, Di Pietrantonj C, Demicheli V. Efficacy and effectiveness of influenza vaccines in elderly people: a systematic review. Lancet 2005; 366 9492 1165-74.
  • 56 Rivetti D, Jefferson T, Thomas R, Rudin M, Rivetti A, Di Pietrantonj C. et al. Vaccines for preventing influenza in the elderly. Cochrane Database Syst Rev 2006; Jul 19 (03) CD004876.
  • 57 Jefferson T, Di Pietrantonj C, Al-Ansary LA, Ferroni E, Thorning S, Thomas RE. Vaccines for preventing influenza in the elderly. Cochrane Database Syst Rev 2010; Feb 17 (02) CD004876.
  • 58 Jefferson T, Rivetti A, Di Pietrantonj C, Demicheli V, Ferroni E. Vaccines for preventing influenza in healthy children. Cochrane Database Syst Rev 2012 Aug 15 8: CD004879.
  • 59 Shah NH. Translational bioinformatics embraces big data. Yearb Med Inform 2012; 7 (Suppl. 01) 130-4.
  • 60 Bartlett C, Wurtz R. Twitter and Public Health. J Public Health Manag Pract 2013 Dec 18. [Epub ahead of print]
  • 61 Denecke K, Krieck M, Otrusina L, Smrz P, Dolog P, Nejdl W. et al. How to exploit twitter for public health monitoring?. Methods Inf Med 2013; 52 (Suppl. 04) 326-39.
  • 62 Greaves F, Ramirez-Cano D, Millett C, Darzi A, Donaldson L. Harnessing the cloud of patient experience: using social media to detect poor quality healthcare. BMJ Qual Saf 2013; Mar 22 (Suppl. 03) 251-5.
  • 63 Hay SI, George DB, Moyes CL, Brownstein JS. Big data opportunities for global infectious disease surveillance. PLoS Med 2013; 10 (Suppl. 04) e1001413.
  • 64 Paul MJ, Dredze M. You Are What You Tweet: Analyzing Twitter for Public Health. ICWSM 2011 July;
  • 65 Eurosurveillance editorial team.. ECDC in collaboration with the VAESCO consortium to develop a complementary tool for vaccine safety monitoring in Europe. Euro Surveill. 2009; Oct 1 14(39). pii: 19345.
  • 66 Zanoni G, Berra P, Lucchi I, Ferro A, O’Flanagan D, Levy-Bruhl D. et.al. Vaccine adverse event monitoring systems across the European Union countries: time for unifying efforts. Vaccine 2009 May 26 27 25-26 3376-84.
  • 67 Crawford NW, Clothier H, Hodgson K, Selvaraj G, Easton ML, Buttery JP. Active surveillance for adverse events following immunization. Expert Rev Vaccines 2013 Dec 18.
  • 68 Carneiro HA, Mylonakis E. Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clin Infect Dis 2009; 49 (Suppl. 10) 1557-64.
  • 69 Jalali A, Olabode OA, Bell CM. Leveraging Cloud Computing to Address Public Health Disparities: An Analysis of the SPHPS. Online J Public Health Inform 2012 4. 03
  • 70 Achrekar H, Gandhe A, Lazarus R, Yu SH, Liu B. Predicting flu trends using twitter data. In: Computer Communications Workshops (INFOCOM WKSHPS). 2011; IEEE Conference 2011. p. 702-7
  • 71 Signorini A, Segre AM, Polgreen PM. The use of twitter to track levels of disease activity and public concern in the U.S. during the Influenza A H1N1 pandemic. PLoS One 2011; 6: e19467.
  • 72 Love B, Himelboim I, Holton A, Stewart K. Twitter as a source of vaccination information. Content drivers and what they are saying. Am J Infect Control 2013; 41 (Suppl. 06) 568-70.
  • 73 CIOMS.. Practical Aspects of Signal Detection in Pharmacovigilance. CIOMS; 2010
  • 74 Iskander JK, Miller ER, Chen RT. The role of the Vaccine Adverse Event Reporting system (VAERS) in monitoring vaccine safety. Pediatr Ann 2004; Sep 33 (Suppl. 09) 599-606.
  • 75 Lyon A, Nunn M, Grossel G, Burgman M. Comparison of web-based biosecurity intelligence systems: BioCaster, EpiSPIDER and HealthMap. Transbound Emerg Dis 2012; Jun 59 (Suppl. 03) 223-32.
  • 76 Denecke K, Krieck M, Otrusina L, Smrz P, Dolog P, Nejdl W. et al. How to exploit twitter for public health monitoring?. Methods Inf Med 2013; 52 (Suppl. 04) 326-39.
  • 77 Guo B, Page A, Wang H, Taylor R, McIntyre P. Systematic review of reporting rates of adverse events following immunization: an international comparison of post-marketing surveillance programs with reference to China. Vaccine 2013 Jan 11 31 (Suppl. 04) 603-17.
  • 78 Simonsen L, Spreeuwenberg P, Lustig R, Taylor RJ, Fleming DM, Kroneman M. et al GLaMOR Collaborating Teams. Global mortality estimates for the 2009 Influenza Pandemic from the GLaMOR project: a modeling study. PLoS Med 2013; Nov 10 (Suppl. 11) e1001558.
  • 79 Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay DK, Cheng PY. et al. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect Dis 2012; Sep 12 (Suppl. 09) 687-95. Erratum in: Lancet Infect Dis 2012 Sep;12(9):655.
  • 80 World Health Organisation (WHO).. Report of the second WHO consultation on the global action plan for influenza vaccines (GAP), Geneva, Switzerland, 12–14 July 2011. URL: http://whqlibdoc.who.int/publications/2012/9789241564410_eng.pdf
  • 81 WHO | Immunization surveillance, assessment and monitoring.. 2014 WHO | Immunization surveillance, assessment and monitoring. [ONLINE] Available at: www.who.int/immunization/monitoring_surveillance/en/. [Accessed 05 December 2013].
  • 82 Dailey L, Watkins RE, Plant AJ. Timeliness of data sources used for influenza surveillance. J Am Med Inform Assoc 2007; Sep-Oct 14 (Suppl. 05) 626-31.
  • 83 Goldenberg A, Shmueli G, Caruana RA, Fienberg SE. Early statistical detection of anthrax outbreaks by tracking over-the-counter medication sales. Proc Natl Acad Sci USA 2002 Apr 16 99 (Suppl. 08) 5237-40.
  • 84 Ohkusa Y, Shigematsu M, Taniguchi K, Okabe N. Experimental surveillance using data on sales of over-the-counter medications--Japan, November 2003-April 2004. MMWR Morb Mortal Wkly Rep 2005; Aug 26 54 Suppl: 47-52.
  • 85 Yang L, Yang SH, Plotnick L. How the Internet of things technology enhances emergency response. Technological Forecasting And Social Change 2013; 80 (Suppl. 09) 1854-67.
  • 86 de Lusignan S, Chan T, Theadom A, Dhoul N. The roles of policy and professionalism in the protection of processed clinical data: a literature review. Int J Med Inform 2007; Apr 76 (Suppl. 04) 261-8.
  • 87 Steinbrook R. Personally controlled online health data-the next big thing in medical care?. N Engl J Med 2008 Apr 17 358 (Suppl. 16) 1653-6.
  • 88 Liyanage H, Liaw ST, de Lusignan S. Accelerating the development of an information ecosystem in health care, by stimulating the growth of safe intermediate processing of health information (IPHI). Inform Prim Care 2012; 20 (Suppl. 02) 81-6.