Yearb Med Inform 2014; 23(01): 128-134
DOI: 10.15265/IY-2014-0021
Original Article
Georg Thieme Verlag KG Stuttgart

Are Electronic Cardiac Devices Still Evolving?

G. Carrault
1   INSERM, U1099, Rennes, F-35000, France
2   INSERM, CIC-IT 1414, Rennes, F-35000, France
3   Université de Rennes 1, LTSI, Rennes, F-35000, France
,
P. Mabo
1   INSERM, U1099, Rennes, F-35000, France
2   INSERM, CIC-IT 1414, Rennes, F-35000, France
3   Université de Rennes 1, LTSI, Rennes, F-35000, France
4   CHU Rennes, Service de Cardiologie et Maladies Vasculaires, Rennes, F-35000, France
› Author Affiliations
Further Information

Publication History

15 August 2014

Publication Date:
05 March 2018 (online)

Summary

Objectives: The goal of this paper is to review some important issues occurring during the past year in Implantable devices.

Methods: First cardiac implantable device was proposed to maintain an adequate heart rate, either because the heart’s natural pacemaker is not fast enough, or there is a block in the heart’s electrical conduction system. During the last forty years, pacemakers have evolved considerably and become programmable and allow to configure specific patient optimum pacing modes. Various technological aspects (electrodes, connectors, algorithms diagnosis, therapies, ...) have been progressed and cardiac implants address several clinical applications: management of arrhythmias, cardioversion / defibrillation and cardiac resynchronization therapy.

Results: Observed progress was the miniaturization of device, increased longevity, coupled with efficient pacing functions, multisite pacing modes, leadless pacing and also a better recognition of supraventricular or ventricular tachycardia’s in order to deliver appropriate therapy. Subcutaneous implant, new modes of stimulation (leadless implant or ultrasound lead), quadripolar lead and new sensor or new algorithm for the hemodynamic management are introduced and briefly described. Each times, the main result occurring during the two past years are underlined and repositioned from the history, remaining limitations are also addressed.

Conclusion: Some important technological improvements were described. Nevertheless, news trends for the future are also considered in a specific session such as the remote follow-up of the patient or the treatment of heart failure by neuromodulation.

 
  • References

  • 1 Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C. et al. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 2001; Mar 22 344 (12) 873-80.
  • 2 Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R. et al. Amiodarone or an implantable cardioverter–defibrillator for congestive heart failure. N Engl J Med 2005; 352: 225-37.
  • 3 Grimm W, Menz V, Hoffmann J. et al. Complications of third generation implantable cardioverter defibrillator therapy. Pacing Clin Electrophysiol 1999; 22: 206-11.
  • 4 Lelakowski J, Majewski J, Malecka B, Bednarek J, Stypula P, Szeglowski M. Retrospective analysis of reasons for failure of DDD pacemaker implantation in patients operated on between 1993 and 2005. Cardiol J 2007; 14: 1559.
  • 5 Sherrid MV, Daubert JP. Risks and challenges of implantable cardioverter defibrillators in young adults. Prog Cardiovasc Dis 2008; 51: 237-63.
  • 6 Bardy GH, Smith WM, Hood MA, Crozier IG, Melton IC, Jordaens L. et al. An entirely subcutaneous Implantable cardioverter-defibrillator. N Engl J Med 2010; 36: 43.
  • 7 Weiss R, Knight BP, Gold MR, Leon AR, Herre JM, Hood M. Safety and Efficacy of a totally subcutaneous implantable cardioverter-defibrillator. Circulation 2013; Aug 27 128 (09) 944-53.
  • 8 Stokes KM, Donders AP. Leadless multisite implantable stimulus and diagnostic system. US Patent 5,814,089. September 29, 1998
  • 9 Jacobson PM. Leadless cardiac pacemaker triggered by conductive communication. US Patent Application 2007/0088398, April 19, 2007
  • 10 Hastings RN, Lafontaine DM, Pikus MJ. et al. Cardiac stimulation using leadless electrode assemblies. US Patent Application 2009/0018599.
  • 11 Benditt DG, Goldstein M, Belalcazar A. The leadless ultrasonic pacemaker : A sound idea?. Heart Rhythm 2009; Jun 6 (06) 749-51.
  • 12 Lee KL, Tse HF, Echt DS, Lau CP. Temporary leadless pacing in heart failure patients with ultrasound-mediated stimulation energy and effects on acoustic window. Heart Rhythm 2009; 6: 742-8.
  • 13 Deterre M, Lefeuvre E. Autonomous Intracorporeal Capsule with Piezoelectric Energy Harvesting. US patent application N°13797018, March 12, 2013
  • 14 Auricchio A, Stellbrink C, Block M, Sack S, Vogt J, Bakker P. et al. Effect of pacing chamber and atrioventricular delay on acute systolic function of paced patients with congestive heart failure. Circulation 1999; Jun 15 99 (23) 2993-3001.
  • 15 Sun JP, Lee AP-W, Grimm RA, Hung M-J, Yang XS, Delurgio D. et al. Optimisation of atrioventricular delay during exercise improves cardiac output in patients stabilised with cardiac resynchronisation therapy. Heart 2012; 98 (01) 54-9.
  • 16 Durand LG, Pibarot P. Digital signal processing of the phonocardiogram: Review of the most recent advancements. Crit Rev Biomed Eng 1995; 23 (03) 163-219.
  • 17 Marcus FI, Sorrell V, Zanetti J, Bosnos M, Baweja G, Perlick D. Ott et al. Accelerometer-derived time intervals during various pacing modes in patients with biventricular pacemakers: Comparison with normals. Pacing Clin Electrophysiol 2007; 30 (12) 1476-81.
  • 18 Plicchi G, Marcelli E, Parlapiano M, Bombardini T. Pea i and pea ii based implantable haemodynamic monitor: Pre clinical studies in sheep. Europace 2002; 4 (01) 49-54.
  • 19 Delnoy PP, Marcelli E, Oudeluttikhuis H, Nicastia D, Renesto F, Cercenelli L. et al. Validation of a peak endocardial acceleration-based algorithm to optimize cardiac resynchronization: Early clinical results. Europace 2008; 10 (07) 801-8.
  • 20 Giorgis L, Hernandez A, Amblard A, Senhadji L, Cazeau S, Jauvert G. et al. Analysis of cardiac micro-acceleration signals for the estimation of systolic and diastolic time intervals in cardiac resynchronization therapy. Proc Computers Cardiol 2008; 393-6.
  • 21 Donal E, Giorgis L, Cazeau S, Leclercq C, Senhadji L, Amblard A. et al. Endocardial acceleration (SonR) vs. ultrasound-derived time intervals in recipients of cardiac resynchronization therapy systems. Europace 2001; 13 (03) 402-8.
  • 22 Giorgis L, Frogerais P, Amblard A, Donal E, Mabo P, Senhadji L. et al. Optimal Algorithm Switching for the Estimation of Systole Period From Cardiac Microacceleration Signals (SonR). IEEE Trans Biomed Eng 2012; Nov 59 (11) 3009-15.
  • 23 David O. Martin and al Investigation of a novel algorithm for synchronized left- ventricular pacing and ambulatory optimization of cardiac resynchronization therapy. Results of the adaptive CRT trial, Heart Rhythm 2012 9, 11.
  • 24 Gurevitz O, Nof E, Carasso S, Luria D, Bar-Lev D, Tanami N. et al. Programmable multiple pacing configura- tions help to overcome high left ventricular pacing thresholds and avoid phrenic nerve stimulation. Pacing Clin Electrophysiol 2005; 28: 1255-9.
  • 25 Seifert M, Schau T, Moeller V, Neuss M, Meyhoefer J, Butter C. Influence of pacing configurations, body mass index, and position of coronary sinus lead on frequency of phrenic nerve stimulation and pacing thresholds under cardiac resynchronization therapy. Europace 2010; 12: 961-7.
  • 26 Forleo GB, Mantica M, Di Biase L, Panattoni G, Della Rocca DG, Papavasileiou LP. et al. Clinical and procedural outcome of patients implanted with a quadripolar left ventricular lead: Early results of a prospective multicenter study. Heart Rhythm 2012; Nov 9 (11) 1822-8.
  • 27 Valls-Bertault V, Mansourati J, Gilard M, Etienne Y, Munier S, Blanc JJ. Adverse events with transvenous left ventricular pacing in patients with severe heart failure: early experience from a single centre. Europace 2001; Jan 3 (01) 60-3.
  • 28 Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L. et al, Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators.. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005; Apr 14 352 (15) 1539-49.
  • 29 Vardas PE, Auricchio A, Blanc JJ. European Society of Cardiology; European Heart Rhythm Association.. Guidelines for cardiac pacing and cardiac resynchronization therapy. The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association. Europace 2007; 9: 959-98.
  • 30 Epstein AE. et al American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/ NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Anti- arrhythmia Devices); American Association for Thoracic Surgery; Society of Thoracic Surgeons.. ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardi- ology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/ NASPE 2002. Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices): developed in collabor- ation with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol 2008; 27;51: e1-e62.
  • 31 Mabo P, Victor F, Bazin P, Ahres S, Babuty D, Da Costa A. et al. A randomized trial of long-term remote monitoring of pacemaker recipients (The COMPAS trial). Eur Heart J 2012; May 33 (09) 1105-11.
  • 32 CIBIS-II Investigators and Committee.. The Cardiac Insufficiency Bisoprolol Study II (CIBISII): a randomised trial. Lancet 1999; 353: 9-13.
  • 33 Hjalmarson A, Goldstein S, Fagerberg B. et al., for the MERIT-HF Study Group. Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). JAMA 2000; 283: 1295-302.
  • 34 Packer M, Coats AJ, Fowler MB, Wedel H, Waagstein F, Kjekshus J. et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 2001; 344: 1651-8.
  • 35 Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 2004; 109: 120-4.
  • 36 Sabbah HN, Imai M, Zaretsky A, Rastogi S, Wang M, Jiang A. et al. Therapy with vagus nerve electrical stimulation combined with beta-blockade improves left ventricular systolic function in dogs with heart failure beyond that seen with beta-blockade alone. (abstr) Eur J Heart Fail 2007; 6 (Suppl 1): 114.
  • 37 Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR. et al. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high rate pacing model. Circ Heart Fail 2009; Nov 2 (06) 692-9.
  • 38 De Ferrari GM, Crijns HJGM, Borggrefe M, Milasinovic G, Smid J, Zabel M. et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 2011; Apr 32 (07) 847-55.