Yearb Med Inform 2014; 23(01): 224-227
DOI: 10.15265/IY-2014-0040
Original Article
Georg Thieme Verlag KG Stuttgart

Information Technology for Clinical, Translational and Comparative Effectiveness Research

Findings from the Section Clinical Research Informatics
C. Daniel
1   INSERM UM RS 1142, Paris, France
,
R. Choquet
1   INSERM UM RS 1142, Paris, France
,
Section Editors for the IMIA Yearbook Section on Section on Clinical Research Informatics › Author Affiliations
Further Information

Publication History

15 August 2014

Publication Date:
05 March 2018 (online)

Summary

Objective: To select and summarize key contributions to current research in the field of Clinical Research Informatics (CRI).

Method: A bibliographic search using a combination of MeSH and free terms search over PubMed was performed followed by a blinded review.

Results: The review process resulted in the selection of four papers illustrating various aspects of current research efforts in the area of CRI. The first paper tackles the challenge of extracting accurate phenotypes from Electronic Healthcare Records (EHRs).

Privacy protection within shared de-identified, patient-level research databases is the focus of the second selected paper. Two other papers exemplify the growing role of formal representation of clinical data - in metadata repositories - and knowledge – in ontologies - for supporting the process of reusing data for clinical research.

Conclusions: The selected articles demonstrate how concrete platforms are currently achieving interoperability across clinical research and care domains and have reached the evaluation phase. When EHRs linked to genetic data have the potential to shift the research focus from research driven patient recruitment to phenotyping in large population, a key issue is to lower patient re-identification risks for biomedical research databases.

Current research illustrates the potential of knowledge engineering to support, in the coming years, the scientific lifecycle of clinical research.

 
  • References

  • 1 Atreya RV, Smith JC, McCoy AB, Malin B, Miller RA. Reducing patient re-identification risk for laboratory results within research datasets.. J Am Med Inform Assoc 2013; 20 (01) 95-101.
  • 2 Coorevits P, Sundgren M, Klein GO, Bahr A, Claerhout B, Daniel C. et al. Electronic health records: new opportunities for clinical research.. J Intern Med 2013; 274 (06) 547-60.
  • 3 Fernández-Breis JT, Maldonado JA, Marcos M, Legaz-García MDC, Moner D, Torres-Sospedra J. et al. Leveraging electronic healthcare record standards and semantic web technologies for the identification of patient cohorts.. J Am Med Inform Assoc 2013; 20 e2 e288-96.
  • 4 Hersh WR, Weiner MG, Embi PJ, Logan JR, Payne PRO, Bernstam EV. et al. Caveats for the use of operational electronic health record data in comparative effectiveness research.. Med Care 2013; 51 8 Suppl 3 S30-7.
  • 5 Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records.. J Am Med Inform Assoc 2013; 20 (01) 117-21.
  • 6 Klann JG, Murphy SN. Computing health quality measures using Informatics for Integrating Biology and the Bedside.. J Med Internet Res 2013; 15 (04) e75.
  • 7 Köpcke F, Kraus S, Scholler A, Nau C, Schüttler J, Prokosch H-U. et al. Secondary use of routinely collected patient data in a clinical trial: an evaluation of the effects on patient recruitment and data acquisition.. Int J Med Inform 2013; 82 (03) 185-92.
  • 8 Kukafka R, Allegrante JP, Khan S, Bigger JT, Johnson SB. Understanding facilitators and barriers to reengineering the clinical research enterprise in community-based practice settings.. Contemp Clin Trials 2013; 36 (01) 166-74.
  • 9 Li AH, Kim SJ, Rangrej J, Scales DC, Shariff S, Redelmeier DA. et al. Validity of physician billing claims to identify deceased organ donors in large healthcare databases.. PLoS One 2013; 8 (08) e70825.
  • 10 Martin Sanchez F, Gray K, Bellazzi R, Lopez-Campos G. Exposome informatics: considerations for the design of future biomedical research information systems.. J Am Med Inform Assoc 2014; May-Jun 21 (03) 386-90.
  • 11 McMurry AJ, Murphy SN, MacFadden D, Weber G, Simons WW, Orechia J. et al. SHRINE: enabling nationally scalable multi-site disease studies.. PLoS One 2013; 8 (03) e55811.
  • 12 Newton KM, Peissig PL, Kho AN, Bielinski SJ, Berg RL, Choudhary V. et al. Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network.. J Am Med Inform Assoc 2013; 20 e1 e147-54.
  • 13 O’Driscoll A, Daugelaite J, Sleator RD. « Big data », Hadoop and cloud computing in genomics.. J Biomed Inform 2013; 46 (05) 774-81.
  • 14 O’Meara H, Carr DF, Evely J, Hobbs M, McCann G, van Staa T. et al. Electronic Health Records For Biological Sample Collection: Feasibility Study Of Statin-Induced Myopathy Using The Clinical Practice Research Datalink.. Br J Clin Pharmacol 2014; May 77 (05) 831-8.
  • 15 Patel VN, Kaelber DC. Using aggregated, de-identified electronic health record data for multivariate pharmacosurveillance: A case study of azathioprine.. J Biomed Inform 2013 Oct 28. pii: S1532-0464(13)00161-5.
  • 16 Pathak J, Bailey KR, Beebe CE, Bethard S, Carrell DC, Chen PJ. et al. Normalization and standardization of electronic health records for high-throughput phenotyping: the SHARPn consortium.. J Am Med Inform Assoc 2013; 20 e2 e341-8.
  • 17 Sahoo SS, Jayapandian C, Garg G, Kaffashi F, Chung S, Bozorgi A. et al. Heart beats in the cloud: distributed analysis of electrophysiological « big data » using cloud computing for epilepsy clinical research.. J Am Med Inform Assoc 2014; Mar-Apr 21 (02) 263-71.
  • 18 Sim I, Tu SW, Carini S, Lehmann HP, Pollock BH, Peleg M. et al. The Ontology of Clinical Research (OCRe): An informatics foundation for the science of clinical research.. J Biomed Inform. 2013 Nov 13. pii: S1532-0464(13)00179-2.
  • 19 Sinaci AA, Laleci Erturkmen GB. A federated semantic metadata registry framework for enabling interoperability across clinical research and care domains.. J Biomed Inform 2013; 46 (05) 784-94.
  • 20 Toh S, Gagne JJ, Rassen JA, Fireman BH, Kulldorff M, Brown JS. Confounding adjustment in comparative effectiveness research conducted within distributed research networks.. Med Care 2013; 51 8 Suppl 3 S4-10.