RSS-Feed abonnieren
DOI: 10.15265/IY-2016-040
Biomechanisms of Comorbidity: Reviewing Integrative Analyses of Multi-omics Datasets and Electronic Health Records
Publikationsverlauf
10. November 2016
Publikationsdatum:
06. März 2018 (online)
Summary
Objectives: Disease comorbidity is a pervasive phenomenon impacting patients’ health outcomes, disease management, and clinical decisions. This review presents past, current and future research directions leveraging both phenotypic and molecular information to uncover disease similarity underpinning the biology and etiology of disease comorbidity.
Methods: We retrieved ~130 publications and retained 59, ranging from 2006 to 2015, that comprise a minimum number of five diseases and at least one type of biomolecule. We surveyed their methods, disease similarity metrics, and calculation of comorbidities in the electronic health records, if present.
Results: Among the surveyed studies, 44% generated or validated disease similarity metrics in context of comorbidity, with 60% being published in the last two years. As inputs, 87% of studies utilized intragenic loci and proteins while 13% employed RNA (mRNA, LncRNA or miRNA). Network modeling was predominantly used (35%) followed by statistics (28%) to impute similarity between these biomolecules and diseases. Studies with large numbers of biomolecules and diseases used network models or naïve overlap of disease-molecule associations, while machine learning, statistics, and information retrieval were utilized in smaller and moderate sized studies. Multiscale computations comprising shared function, network topology, and phenotypes were performed exclusively on proteins. Conclusion: This review highlighted the growing methods for identifying the molecular mechanisms underpinning comorbidities that leverage multiscale molecular information and patterns from electronic health records. The survey unveiled that intergenic polymorphisms have been overlooked for similarity imputation compared to their intragenic counterparts, offering new opportunities to bridge the mechanistic and similarity gaps of comorbidity.
Keywords
Comorbidity - disease similarity - electronic health records - phenome - biomolecules - function - omics - modularity - integrative data analysis* These authors contributed equally
-
References
- 1 National Insitute on Aging, National Insitute of Health, and World Health Organization, Global Health and Aging.. NIH Publication; Oct.. 2011 p. 11-7737.
- 2 Dye C. After 2015: infectious diseases in a new era of health and development.. Philos Trans R Soc Lond B Biol Sci 2014; 369 1645 20130426.
- 3 Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M. Defining comorbidity: implications for understanding health and health services.. Ann Fam Med 2009; 7 (Suppl. 04) 357-63.
- 4 World Health Organization.. Global status report on noncommunicable diseases 2014; 2014
- 5 Hunter DJ, Reddy KS. Noncommunicable diseases.. N Engl J Med 2013; 369 (Suppl. 14) 1336-43.
- 6 Jakovljevic M, Ostojic L. Comorbidity and multimorbidity in medicine today: challenges and opportunities for bringing separated branches of medicine closer to each other.. Psychiatr Danub 2013; 25 (Suppl. 01) 18-28.
- 7 Barnett K. et al., Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study.. Lancet 2012; 380 9836 p. 37-43.
- 8 Pantalone KM, Hobbs TM, Wells BJ, Kong SX, Kattan MW, Bouchard J. et al. Clinical characteristics, complications, comorbidities and treatment patterns among patients with type 2 diabetes mellitus in a large integrated health system.. BMJ Open Diabetes Res Care 2015; 3 (Suppl. 01) e0093.
- 9 Demetrius LA, Magistretti PJ, Pellerin L. Alzheimer’s disease: the amyloid hypothesis and the Inverse Warburg effect.. Front Physiol 2014; 5: 522.
- 10 Tabares-Seisdedos R, Rubenstein JL. Inverse cancer comorbidity: a serendipitous opportunity to gain insight into CNS disorders.. Nat Rev Neurosci 2013; 14 (Suppl. 04) 293-304.
- 11 Tabares-Seisdedos R, Dumont N, Baudot A, Valderas JM, Climent J, Valencia A. et al. No paradox, no progress: inverse cancer comorbidity in people with other complex diseases.. Lancet Oncol 2011; 12 (Suppl. 06) 604-8.
- 12 Robinson D.Jr, Hackett M, Wong J, Kimball AB, Cohen R, Bala M. et al. Co-occurrence and comorbidities in patients with immune-mediated inflammatory disorders: an exploration using US healthcare claims data, 2001-2002.. Curr Med Res Opin 2006; 22 (Suppl. 05) 989-1000.
- 13 Bonavita V, De Simone R. Towards a definition of comorbidity in the light of clinical complexity.. Neurol Sci 2008; 29 (Suppl. 01) S99-102.
- 14 van Weel C, Schellevis FG. Comorbidity and guidelines: conflicting interests.. Lancet 2006; 367 9510 550-1.
- 15 Beckles MA, Spiro SG, Colice GL, Rudd RM. American College of Chest Physicians The physiologic evaluation of patients with lung cancer being considered for resectional surgery.. Chest 2003; 123 (Suppl. 01) 105S-114S.
- 16 Lee L, Cheung WY, Atkinson E, Krzyzanowska MK. Impact of comorbidity on chemotherapy use and outcomes in solid tumors: a systematic review.. J Clin Oncol 2011; 29 (Suppl. 01) 106-17.
- 17 Sogaard M, Thomsen RW, Bossen KS, Sørensen HT, Nørgaard M. The impact of comorbidity on cancer survival: a review.. Clin Epidemiol 2013; 5 (Suppl. 01) 3-29.
- 18 Wolff JL, Starfield B, Anderson G. Prevalence, expenditures, and complications of multiple chronic conditions in the elderly.. Arch Intern Med 2002; 162 (Suppl. 20) 2269-76.
- 19 Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease.. Nat Rev Genet 2011; 12 (Suppl. 01) 56-68.
- 20 Freudenberg J, Propping P. A similarity-based method for genome-wide prediction of disease-relevant human genes.. Bioinformatics 2002; 18 (Suppl. 02) S110-5.
- 21 Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network.. Proc Natl Acad Sci U S A 2007; 104 (Suppl. 21) 8685-90.
- 22 Jimenez-Sanchez G, Childs B, Valle D. Human disease genes.. Nature 2001; 409 6822 853-5.
- 23 Oti M, Brunner HG. The modular nature of genetic diseases.. Clin Genet 2007; 71 (Suppl. 01) 1-11.
- 24 Park J, Lee DS, Christakis NA, Barabási AL. The impact of cellular networks on disease comorbidity.. Mol Syst Biol 2009; 5: 262.
- 25 Wang Q, Liu W, Ning S, Ye J, Huang T, Li Y, Wang P. et al. Community of protein complexes impacts disease association.. Eur J Hum Genet 2012; 20 (Suppl. 11) 1162-7.
- 26 Zhernakova A, van Diemen CC, Wijmenga C. Detecting shared pathogenesis from the shared genetics of immune-related diseases.. Nat Rev Genet 2009; 10 (Suppl. 01) 43-55.
- 27 Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabási AL. The implications of human metabolic network topology for disease comorbidity.. Proc Natl Acad Sci U S A 2008; 105 (Suppl. 29) 9880-5.
- 28 Chan SY, Loscalzo J. The emerging paradigm of network medicine in the study of human disease.. Circ Res 2012; 111 (Suppl. 03) 359-74.
- 29 Gustafsson M, Nestor CE, Zhang H, Barabási AL, Baranzini S, Brunak S. et al. Modules, networks and systems medicine for understanding disease and aiding diagnosis.. Genome Med 2014; 6 (Suppl. 10) 82.
- 30 Furlong LI. Human diseases through the lens of network biology.. Trends Genet 2013; 29 (Suppl. 03) 150-9.
- 31 Stelzl U, Worm U, Lalowski M, Haenig C, Brem-beck FH, Goehler H. et al. A human protein-protein interaction network: a resource for annotating the proteome.. Cell 2005; 122 (Suppl. 06) 957-68.
- 32 Barrenas F, Chavali S, Alves AC, Coin L, Jarvelin MR, Jörnsten R. et al. Highly interconnected genes in disease-specific networks are enriched for disease-associated polymorphisms.. Genome Biol 2012; 13 (Suppl. 06) R46.
- 33 Gustafsson M, Edström M, Gawel D, Nestor CE, Wang H, Zhang H. et al. Integrated genomic and prospective clinical studies show the importance of modular pleiotropy for disease susceptibility, diagnosis and treatment.. Genome Med 2014; 6 (Suppl. 02) 17.
- 34 Vidal M, Cusick ME, Barabasi AL. Inter-actome networks and human disease.. Cell 2011; 144 (Suppl. 06) 986-98.
- 35 Gligorijevic V, Malod-Dognin N, Przulj N. Integrative methods for analysing big data in precision medicine.. Proteomics 2015
- 36 Gligorijevic V, Przulj N. Methods for biological data integration: perspectives and challenges.. J R Soc Interface 2015;12(112).
- 37 Le D-H, Hoai NX, Kwon Y-K. A Comparative Study of Classification-Based Machine Learning Methods for Novel Disease Gene Prediction.. In: Knowledge and Systems Engineering. Springer; 2015. p. 577-88.
- 38 Wang X, Gulbahce N, Yu H. Network-based methods for human disease gene prediction.. Brief Funct Genomics 2011; 10 (Suppl. 05) 280-93.
- 39 Moreau Y, Tranchevent LC. Computational tools for prioritizing candidate genes: boosting disease gene discovery.. Nat Rev Genet 2012; 13 (Suppl. 08) 523-36.
- 40 Mitra K, Carvunis AR, Ramesh SK, Ideker T. Integrative approaches for finding modular structure in biological networks.. Nat Rev Genet 2013; 14 (Suppl. 10) 719-32.
- 41 Al-Harazi O, Al Insaif S, Al-Ajlan MA, Kaya N, Dzimiri N, Colak D. Integrated Genomic and Network-Based Analyses of Complex Diseases and Human Disease Network.. J Genet Genomics 2016; Jun 20 43 (Suppl. 06) 349-67.
- 42 Freimer N, Sabatti C. The human phenome project.. Nat Genet 2003; 34 (Suppl. 01) 15-21.
- 43 Houle D, Govindaraju DR, Omholt S. Phenomics: the next challenge.. Nat Rev Genet 2010; 11 (Suppl. 12) 855-66.
- 44 Snyder M, Weissman S, Gerstein M. Personal phenotypes to go with personal genomes.. Mol Syst Biol 2009; 5: 273.
- 45 Oti M, Huynen MA, Brunner HG. The biological coherence of human phenome databases.. Am J Hum Genet 2009; 85 (Suppl. 06) 801-8.
- 46 Pendergrass SA, Brown-Gentry K, Dudek SM, Torstenson ES, Ambite JL, Avery CL. et al. The use of phenome-wide association studies (PheWAS) for exploration of novel genotype-phenotype relationships and pleiotropy discovery.. Genet Epidemiol 2011; 35 (Suppl. 05) 410-22.
- 47 Almasy L. The role of phenotype in gene discovery in the whole genome sequencing era.. Hum Genet 2012; 131 (Suppl. 10) 1533-40.
- 48 Swanson DR. Fish oil, Raynaud’s syndrome, and undiscovered public knowledge.. Perspect Biol Med 1986; 30 (Suppl. 01) 7-18.
- 49 Jensen LJ, Saric J, Bork P. Literature mining for the biologist: from information retrieval to biological discovery.. Nat Rev Genet 2006; 7 (Suppl. 02) 119-29.
- 50 Agarwal P, Searls DB. Can literature analysis identify innovation drivers in drug discovery?. Nat Rev Drug Discov 2009; 8 (Suppl. 11) 865-78.
- 51 Cohen AM, Hersh WR. A survey of current work in biomedical text mining.. Brief Bioinform 2005; 6 (Suppl. 01) 57-71.
- 52 Butte AJ, Kohane IS. Creation and implications of a phenome-genome network.. Nat Biotechnol 2006; 24 (Suppl. 01) 55-62.
- 53 van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA. A text-mining analysis of the human phenome.. Eur J Hum Genet 2006; 14 (Suppl. 05) 535-42.
- 54 Wu X, Jiang R, Zhang MQ, Li S. Network-based global inference of human disease genes.. Mol Syst Biol 2008; 4: 189.
- 55 Wu X, Liu Q, Jiang R. Align human interactome with phenome to identify causative genes and networks underlying disease families.. Bioinformatics 2009; 25 (Suppl. 01) 98-104.
- 56 Zhou X, Menche J, Barabási AL, Sharma A. Human symptoms-disease network.. Nat Commun 2014; 5: 4212.
- 57 Wilke RA, Xu H, Denny JC, Roden DM, Krauss RM, McCarty CA. et al. The emerging role of electronic medical records in pharmacogenomics.. Clin Pharmacol Ther 2011; 89 (Suppl. 03) 379-86.
- 58 Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care.. Nat Rev Genet 2012; 13 (Suppl. 06) 395-405.
- 59 Roque FS, Jensen PB, Schmock H, Dalgaard M, Andreatta M, Hansen T. et al., Using electronic patient records to discover disease correlations and stratify patient cohorts.. PLoS Comput Biol 2011; 7 (Suppl. 08) e1002141.
- 60 Jensen AB, Moseley PL, Oprea TI, Ellesøe SG, Eriksson R, Schmock H. et al. Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients.. Nat Commun 2014; 5: 4022.
- 61 Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations.. Bioinformatics 2010; 26 (Suppl. 09) 1205-10.
- 62 Rzhetsky A, Wajngurt D, Park N, Zheng T. Probing genetic overlap among complex human phenotypes.. Proc Natl Acad Sci U S A 2007; 104 (Suppl. 028) 11694-9.
- 63 Hidalgo CA. et al., A dynamic network approach for the study of human phenotypes.. PLoS Comput Biol 2009; 5 (Suppl. 04) p. e1000353.
- 64 Blair DR, Lyttle CS, Mortensen JM, Bearden CF, Jensen AB, Khiabanian H. et al. A nondegenerate code of deleterious variants in Mendelian loci contributes to complex disease risk.. Cell 2013; 155 (Suppl. 01) 70-80.
- 65 Melamed RD, Emmett KJ, Madubata C, Rzhetsky A, Rabadan R. Genetic similarity between cancers and comorbid Mendelian diseases identifies candidate driver genes.. Nat Commun 2015; 6: 7033.
- 66 Sun K, Gonçalves JP, Larminie C, Przulj N. Predicting disease associations via biological network analysis.. BMC Bioinformatics 2014; 15: 304.
- 67 Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T. et al. Abundant pleiotropy in human complex diseases and traits.. Am J Hum Genet 2011; 89 (Suppl. 05) 607-18.
- 68 Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: challenges and strategies.. Nat Rev Genet 2013; 14 (Suppl. 07) 483-95.
- 69 Hall MA, Verma A, Brown-Gentry KD, Goodloe R, Boston J, Wilson S. et al. Detection of pleiotropy through a Phenome-wide association study (PheWAS) of epidemiologic data as part of the Environmental Architecture for Genes Linked to Environment (EAGLE) study.. PLoS Genet 2014; 10 (Suppl. 12) e1004678.
- 70 Pendergrass SA, Brown-Gentry K, Dudek S, Frase A, Torstenson ES, Goodloe R. et al. Phenome-wide association study (PheWAS) for detection of pleiotropy within the Population Architecture using Genomics and Epidemiology (PAGE) Network.. PLoS Genet 2013; 9 (Suppl. 01) e1003087.
- 71 Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, Mosley JD. et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data.. Nat Biotechnol 2013; 31 (Suppl. 12) 1102-10.
- 72 Sirota M, Schaub MA, Batzoglou S, Robinson WH, Butte AJ. Autoimmune disease classification by inverse association with SNP alleles.. PLoS Genet 2009; 5 (Suppl. 12) e1000792.
- 73 Cotsapas C, Voight BF, Rossin E, Lage K, Neale BM, Wallace C. et al. Pervasive sharing of genetic effects in autoimmune disease.. PLoS Genet 2011; 7 (Suppl. 08) e1002254.
- 74 Chang D, Keinan A. Principal component analysis characterizes shared pathogenetics from genome-wide association studies.. PLoS Comput Biol 2014; 10 (Suppl. 09) e1003820.
- 75 Li L, Ruau DJ, Patel CJ, Weber SC, Chen R, Tatonetti NP. et al. Disease risk factors identified through shared genetic architecture and electronic medical records.. Sci Transl Med 2014; 6 (Suppl. 234) 234ra57.
- 76 Barrenas F, Chavali S, Holme P, Mobini R, Benson M. Network properties of complex human disease genes identified through genome-wide association studies.. PLoS One 2009; 4 (Suppl. 11) e8090.
- 77 Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X. et al. miR2Disease: a manually curated database for microRNA deregulation in human disease.. Nucleic Acids Res 2009; 37 Database issue D98-104.
- 78 Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W. et al. An analysis of human microRNA and disease associations.. PLoS One 2008; 3 (Suppl. 010) e3420.
- 79 Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X. et al. LncRNADisease: a database for long-non-coding RNA-associated diseases.. Nucleic Acids Res 2013; 41 Database issue D983-6.
- 80 Sam L, Liu Y, Li J, Friedman C, Lussier YA. Discovery of protein interaction networks shared by diseases.. Pac Symp Biocomput 2007; 76-87.
- 81 Li H, Lee Y, Chen JL, Rebman E, Li J, Lussier YA. Complex-disease networks of trait-associated single-nucleotide polymorphisms (SNPs) unveiled by information theory.. J Am Med Inform Assoc 2012; 19 (Suppl. 02) 295-305.
- 82 Li Y, Agarwal P. A pathway-based view of human diseases and disease relationships.. PLoS One 2009; 4 (Suppl. 02) e4346.
- 83 Yang J, Wu SJ, Dai WT, Li YX, Li YY. The human disease network in terms of dysfunctional regulatory mechanisms.. Biol Direct 2015; 10: 60.
- 84 Tao Y, Sam L, Li J, Friedman C, Lussier YA. Information theory applied to the sparse gene ontology annotation network to predict novel gene function.. Bioinformatics 2007; 23 (Suppl. 13) i529-38.
- 85 Davis DAN.V.. Chawla, Exploring and exploiting disease interactions from multi-relational gene and phenotype networks.. PloS one 2011; 6 (Suppl. 07) p. e22670.
- 86 Ideker T, Sharan R. Protein networks in disease.. Genome Res 2008; 18 (Suppl. 04) 644-52.
- 87 Xu J, Li Y. Discovering disease-genes by topological features in human protein-protein interaction network.. Bioinformatics 2006; 22 (Suppl. 22) 2800-5.
- 88 Kohler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes.. Am J Hum Genet 2008; 82 (Suppl. 04) 949-58.
- 89 Hamaneh M.B.. and Y.K.Yu, Relating diseases by integrating gene associations and information flow through protein interaction network.. PLoS One 2014; 9 (Suppl. 10) p. e110936.
- 90 Yang X, Gao L, Guo X, Shi X, Wu H, Song F. et al. A network based method for analysis of lncRNA-disease associations and prediction of lncRNAs implicated in diseases.. PLoS One 2014; 9 (Suppl. 01) e87797.
- 91 Chen X, Yan GY. Novel human lncRNA-disease association inference based on lncRNA expression profiles.. Bioinformatics 2013; 29 (Suppl. 20) 2617-24.
- 92 Le DH, Kwon YK. The effects of feedback loops on disease comorbidity in human signaling networks.. Bioinformatics 2011; 27 (Suppl. 08) 1113-20.
- 93 Paik H, Heo HS, Ban HJ, Cho SB. Unraveling human protein interaction networks underlying co-occurrences of diseases and pathological conditions.. J Transl Med 2014; 12: 99.
- 94 Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J. et al. Disease networks. Uncovering disease-disease relationships through the incomplete interactome.. Science 2015; 347 6224 1257601.
- 95 Ghiassian SD, Menche J, Barabasi AL. A DIseAse MOdule Detection (DIAMOnD) algorithm derived from a systematic analysis of connectivity patterns of disease proteins in the human interactome.. PLoS Comput Biol 2015; 11 (Suppl. 04) e1004120.
- 96 Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes and protein complexes with disease via network propagation.. PLoS Comput Biol 2010; 6 (Suppl. 01) e1000641.
- 97 Chen Y, Jiang T, Jiang R. Uncover disease genes by maximizing information flow in the phenome-interactome network.. Bioinformatics 2011; 27 (Suppl. 13) i167-76.
- 98 Hwang T, Zhang W, Xie M, Liu J, Kuang R. Inferring disease and gene set associations with rank coherence in networks.. Bioinformatics 2011; 27 (Suppl. 19) 2692-9.
- 99 Xie M, Xu Y, Zhang Y, Hwang T, Kuang R. Network-based Phenome-Genome Association Prediction by Bi-Random Walk.. PLoS One 2015; 10 (Suppl. 05) e0125138.
- 100 Chen H, Zhang Z. Similarity-based methods for potential human microRNA-disease association prediction.. BMC Med Genomics 2013; 6: 12.
- 101 Li Y, Patra JC. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network.. Bioinformatics 2010; 26 (Suppl. 09) 1219-24.
- 102 Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P. et al. Conserved patterns of protein interaction in multiple species.. Proc Natl Acad Sci U S A 2005; 102 (Suppl. 06) 1974-9.
- 103 Hwang T, Atluri G, Xie M, Dey S, Hong C, Kumar V. et al. Co-clustering phenome-genome for phenotype classification and disease gene discovery.. Nucleic Acids Res 2012; 40 (Suppl. 19) e146.
- 104 Zhao S, Li S. A co-module approach for elucidating drug-disease associations and revealing their molecular basis.. Bioinformatics 2012; 28 (Suppl. 07) 955-61.
- 105 Murphy S, Churchill S, Bry L, Chueh H, Weiss S, Lazarus R. et al. Instrumenting the health care enterprise for discovery research in the genomic era.. Genome Res 2009; 19 (Suppl. 09) 1675-81.
- 106 Roden DM, Pulley JM, Basford MA, Bernard GR, Clayton EW, Balser JR. et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine.. Clin Pharmacol Ther 2008; 84 (Suppl. 03) 362-9.
- 107 Kho AN, Pacheco JA, Peissig PL, Rasmussen L, Newton KM, Weston N. et al. Electronic medical records for genetic research: results of the eMERGE consortium.. Sci Transl Med 2011; 3 (Suppl. 79) 79re1.
- 108 Manolio TA. Collaborative genome-wide association studies of diverse diseases: programs of the NHGRI’s office of population genomics.. Pharmacogenomics 2009; 10 (Suppl. 02) 235-41.
- 109 Shah NH. Mining the ultimate phenome repository.. Nat Biotechnol 2013; 31 (Suppl. 12) 1095-7.
- 110 Sinnott JA, Dai W, Liao KP, Shaw SY, Ananthakrishnan AN, Gainer VS. et al. Improving the power of genetic association tests with imperfect phenotype derived from electronic medical records.. Hum Genet 2014; 133 (Suppl. 11) 1369-82.
- 111 Yu S, Liao KP, Shaw SY, Gainer VS, Churchill SE, Szolovits P. et al. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.. J Am Med Inform Assoc 2015; 22 (Suppl. 05) 993-1000.
- 112 Kohane IS. Using electronic health records to drive discovery in disease genomics.. Nat Rev Genet 2011; 12 (Suppl. 06) 417-28.
- 113 SEQC/MAQC-III Consortium.. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium.. Nat Biotechnol 2014; 32 (Suppl. 09) 903-14.
- 114 Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses.. Nat Rev Genet 2014; 15 (Suppl. 02) 121-32.
- 115 Rouchka EC, Cha IE. Current trends in pseudogene detection and characterization.. Current Bioinformatics 2009; 4 (Suppl. 02) 112-9.
- 116 Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions.. Nat Revi Genet 2012; 13 (Suppl. 01) 36-46.
- 117 Brandt DY, Aguiar VR, Bitarello BD, Nunes K, Goudet J, Meyer D. Mapping Bias Overestimates Reference Allele Frequencies at the HLA Genes in the 1000 Genomes Project Phase I Data.. G3 (Bethesda) 2015; 5 (Suppl. 05) 931-41.
- 118 Richard AC, Lyons PA, Peters JE, Biasci D, Flint SM, Lee JC. et al. Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation.. BMC Genomics 2014; 15: 649.
- 119 Toedling J, Servant N, Ciaudo C, Farinelli L, Voinnet O, Heard E. et al. Deep-sequencing protocols influence the results obtained in small-RNA sequencing.. PLoS One 2012; 7 (Suppl. 02) e32724.
- 120 Harismendy O. et al., Evaluation of next generation sequencing platforms for population targeted sequencing studies.. Genome Biol 2009; 10 (Suppl. 03) p. R32.
- 121 Yauk CL, Ng PC, Strausberg RL, Wang X, Stockwell TB, Beeson KY. et al. Comprehensive comparison of six microarray technologies.. Nucleic Acids Res 2004; 32 (Suppl. 15) e124.
- 122 Qin LX, Zhou Q. MicroRNA array normalization: an evaluation using a randomized dataset as the benchmark.. PLoS One 2014; 9 (Suppl. 06) e98879.
- 123 Gillis J, Ballouz S, Pavlidis P. Bias tradeoffs in the creation and analysis of protein-protein interaction networks.. J Proteomics 2014; 100: 44-54.
- 124 Navlakha S, Kingsford C. The power of protein interaction networks for associating genes with diseases.. Bioinformatics 2010; 26 (Suppl. 08) 1057-63.
- 125 Lage K, Karlberg EO, Størling ZM, Olason PI, Pedersen AG, Rigina O. et al. A human phenome-interactome network of protein complexes implicated in genetic disorders.. Nat Biotechnol 2007; 25 (Suppl. 03) 309-16.
- 126 Tanay A, Sharan R, Kupiec M, Shamir R. Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data.. Proc Natl Acad Sci USA 2004; 101 (Suppl. 09) 2981-6.
- 127 Troyanskaya OG, Dolinski K, Owen AB, Altman RB, Botstein D. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae).. Proc Natl Acad Sci U S A 2003; 100 (Suppl. 14) 8348-53.
- 128 Joyce AR, Palsson BO. The model organism as a system: integrating ‘omics’ data sets.. Nat Rev Mol Cell Biol 2006; 7 (Suppl. 03) 198-210.
- 129 Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F. et al. Gene prioritization through genomic data fusion.. Nat Biotechnol 2006; 24 (Suppl. 05) 537-44.
- 130 Zitnik M, Janjić V, Larminie C, Zupan B, Pržulj N. Discovering disease-disease associations by fusing systems-level molecular data.. Sci Rep 2013; 3: 3202.
- 131 Linghu B, Snitkin ES, Hu Z, Xia Y, Delisi C. Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network.. Genome Biol 2009; 10 (Suppl. 09) R91.
- 132 Jansen RC, Nap RP. Genetical genomics: the added value from segregation.. Trends Genet 2001; 17 (Suppl. 07) 388-91.
- 133 GTEx Consortium.. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans.. Science 2015; 348 6235 648-60.
- 134 Li H, Achour I, Bastarache L, Berhout J, Gardeux V, Li J. et al. Integrative genomics analyses unveil downstream biological effectors of disease-specific polymorphisms buried in intergenic regions.. NPJ Genomic Medicine 2016; 1: 16006.
- 135 Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H. et al., Systematic localization of common disease-associated variation in regulatory DNA.. Science 2012; 337 6099 1190-5.
- 136 Karczewski KJ, Dudley JT, Kukurba KR, Chen R, Butte AJ, Montgomery SB. et al. Systematic functional regulatory assessment of disease-associated variants.. Proc Natl Acad Sci USA 2013; 110 (Suppl. 23) 9607-12.
- 137 Corradin O, Saiakhova A, Akhtar-Zaidi B, Myeroff L, Willis J, Cowper-Sal lari R. et al. Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits.. Genome Res 2014; 24 (Suppl. 01) 1-13.
- 138 Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA. et al. Super-enhancers in the control of cell identity and disease.. Cell 2013; 155 (Suppl. 04) 934-47.
- 139 Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants.. Nature 2015; 518 7539 337-43.
- 140 Yan X, Hu Z, Feng Y, Hu X, Yuan J, Zhao SD. et al. Comprehensive Genomic Characterization of Long Non-coding RNAs across Human Cancers.. Cancer Cell 2015; 28 (Suppl. 04) 529-40.
- 141 Cornish AJ, Filippis I, David A, Sternberg MJ. Exploring the cellular basis of human disease through a large-scale mapping of deleterious genes to cell types.. Genome Med 2015; 7 (Suppl. 01) 95.
- 142 Magger O, Waldman YY, Ruppin E, Sharan R. Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks.. PLoS Comput Biol 2012; 8 (Suppl. 09) e1002690.
- 143 Kotlyar M, Pastrello C, Sheahan N, Jurisica I. Integrated interactions database: tissue-specific view of the human and model organism interactomes.. Nucleic Acids Res 2016; 44 (Suppl. 01) D536-41.
- 144 FANTOM Consortium and the RIKEN PMI and CLST (DGT).. A promoter-level mammalian expression atlas.. Nature 2014; 507 7493 462-70.