Tierarztl Prax Ausg G Grosstiere Nutztiere 2016; 44(04): 242-251
DOI: 10.15653/TPG-160597
Übersichtsartikel
Schattauer GmbH

Automatisierte Fruchtbarkeits- und Gesundheits - überwachung bei der Milchkuh

Eine ÜbersichtAutomated fertility and health surveillance systems in dairy cowsA review
Lisa Zimmermann
1   Klinik für Wiederkäuer mit Ambulanz und Bestandsbetreuung, Ludwig-Maximilians-Universität München
,
Rainer Martin
1   Klinik für Wiederkäuer mit Ambulanz und Bestandsbetreuung, Ludwig-Maximilians-Universität München
,
Holm Zerbe
1   Klinik für Wiederkäuer mit Ambulanz und Bestandsbetreuung, Ludwig-Maximilians-Universität München
› Author Affiliations
Further Information

Publication History

Received: 20 June 2016

Accepted after major revision: 22 July 2016

Publication Date:
23 December 2017 (online)

Zusammenfassung

Durch Zunahme der Betriebsgrößen bei gleichbleibender Arbeitskraft, leistungsbedingte Krankheitsanfälligkeit der Tiere und Zwang zur Wirtschaftlichkeit der Betriebe kommt automatisierten Überwachungssystemen im Milchviehbereich immer größere Bedeutung zu. Der Markt bietet bereits eine Reihe von Systemen zur Überwachung der Milchkuh für verschiedene Managementbereiche. Nicht immer liegt eine wissenschaftliche Validierung ihrer Eignung vor, die aufgrund der nicht unerheblichen Investitionskosten sowie zur Beurteilung der Praktikabilität eines Systems jedoch wünschenswert wäre. In Anbetracht der Entwicklung der letzten Jahre ist auch in den kommenden Jahren mit einem großen Fortschritt auf dem Gebiet der automatisierten Tierüberwachung zu rechnen. Für Tierärzte ergibt sich daher die Notwendigkeit, künftig Prinzipien entsprechender Systeme zu kennen, deren Nützlichkeit einschätzen und mit resultierenden Daten arbeiten zu können, um eine adäquate Beratung der betreuten Betriebe zu gewährleisten. Ziel dieses Übersichtsartikels ist, Möglichkeiten und Grenzen derzeit verfügbarer Überwachungsinstrumente der Brunst, der Geburt und des Gesundheitsstatus (insbesondere der Stoffwechsellage) bei der Milchkuh, aber auch einzelner speziell ausgewählter Überwachungsbereiche darzustellen.

Summary

Automated surveillance systems have become increasingly important in dairy farming. This can be attributed to an increasing farm size with unaltered employee numbers, higher susceptibility of high-yielding animals to diseases and a general constraint to work more cost effectively. A variety of surveillance systems for different areas of application in dairy cow management are currently available. However, their applicability has not always been supported by scientific validation. With regards to the considerable costs in installing and running surveillance systems and to evaluate their practical aspects, further analyses are desirable. Considering the progress in computerbased systems in recent years, we are anticipating rapid developments in automated animal surveillance in the near future. Consequently, the need arises for veterinarians to understand the principles underlying such systems, to be able to assess their efficacy and to be capable of evaluating data derived from these systems in order to advise farmers appropriately. The aim of this study was to assess the benefits and limitations of current surveillance systems for oestrus-detection, partus- alarm and monitoring health status mainly with regards to metabolic disorders in dairy cows, but also for other selected areas of health monitoring.

 
  • Literatur

  • 1 ADR, Arbeitsgemeinschaft Deutscher Rinderzüchter. Rinderproduktion in Deutschland. 2014 Tabelle 4.13.
  • 2 AlZahal O, Steele M, Valdes E, McBride B. Technical note: The use of a telemetric system to continuously monitor ruminal temperature and to predict ruminal pH in cattle. J Dairy Sci 2009; 92: 5697-5701.
  • 3 AlZahal O, AlZahal H, Steele M, Van Schaik M, Kyriazakis I, Duffield T, McBride B. The use of a radiotelemetric ruminal bolus to detect body temperature changes in lactating dairy cattle. J Dairy Sci 2011; 94: 3568-3574.
  • 4 Asmussen T. Herd navigator or „How to benefit from frequent measurements. Proceedings of the 37th ICAR Biennial Session. 2010. Riga, Latvia:
  • 5 At-Taras EE, Spahr SL. Detection and characterization of estrus in dairy cattle with an electronic heatmount detector and an electronic activity tag. J Dairy Sci 2001; 84: 792-798.
  • 6 Azzaro G, Caccamo M, Ferguson JD, Battiato S, Farinella GM, Guarnera GC, Puglisi G, Petriglieri R, Licitra G. Objective estimation of body condition score by modeling cow body shape from digital images. J Dairy Sci 2011; 94: 2126-2137.
  • 7 Bach A, Iglesias C, Busto I. Technical note: a computerized system for monitoring feeding behavior and individual feed intake of dairy cattle. J Dairy Sci 2004; 87: 4207-4209.
  • 8 Bauer U, Harms J, Steyer M, Salau J, Haas JH, Weber A, Junge W, Bieletzki S, Rothfuss H, Suhr O. Automatische Beurteilung der Körperkondition von Milchkühen. Landtechnik - Agricultural Engineering 2012; 67: 409-412.
  • 9 Beauchemin KA. Effects of dietary neutral detergent fiber concentration and alfalfa hay quality on chewing, rumen function, and milk production. J Dairy Sci 1991; 74: 3140-3151.
  • 10 Bercovich A, Edan Y, Alchanatis V, Moallem U, Parmet Y, Honig H, Maltz E, Antler A, Halachmi I. Development of an automatic cow body condition scoring using body shape signature and Fourier descriptors. J Dairy Sci 2013; 96: 8047-8059.
  • 11 Bewley J, Grott M, Einstein M, Schutz M. Impact of intake water temperatures on reticular temperatures of lactating dairy cows. J Dairy Sci 2008; 91: 3880-3887.
  • 12 Bewley JM, Einstein ME, Grott MW, Schutz MM. Comparison of reticular and rectal core body temperatures in lactating dairy cows. J Dairy Sci 2008; 91: 4661-4672.
  • 13 Bewley JM, Peacock AM, Lewis O, Boyce RE, Roberts DJ, Coffey MP, Kenyon SJ, Schutz MM. Potential for estimation of body condition scores in dairy cattle from digital images. J Dairy Sci 2008; 91: 3439-3453.
  • 14 Bikker JP, van Laar H, Rump P, Doorenbos J, van Meurs K, Griffioen GM, Dijkstra J. Technical note: Evaluation of an ear-attached movement sensor to record cow feeding behavior and activity. J Dairy Sci 2014; 97: 2974-2979.
  • 15 Brandt M, Haeussermann A, Hartung E. Invited review: Technical solutions for analysis of milk constituents and abnormal milk. J Dairy Sci 2010; 93: 427-436.
  • 16 Britt JH, Scott RG, Armstrong JD, Whitacre MD. Determinants of estrous behavior in lactating Holstein cows. J Dairy Sci 1986; 69: 2195-2202.
  • 17 Bruyere P, Hetreau T, Ponsart C, Gatien J, Buff S, Disenhaus C, Giroud O, Guerin P. Can video cameras replace visual estrus detection in dairy cows?. Theriogenology 2012; 77: 525-530.
  • 18 Büchel S, Sundrum A. Short communication: Decrease in rumination time as an indicator of the onset of calving. J Dairy Sci 2014; 97: 3120-3127.
  • 19 Burfeind O, Schirmann K, von Keyserlingk M, Veira D, Weary D, Heuwieser W. Technical note: Evaluation of a system for monitoring rumination in heifers and calves. J Dairy Sci 2011; 94: 426-430.
  • 20 Burfeind O, Suthar VS, Voigtsberger R, Bonk S, Heuwieser W. Validity of prepartum changes in vaginal and rectal temperature to predict calving in dairy cows. J Dairy Sci 2011; 94: 5053-5061.
  • 21 Butler W, Smith R. Interrelationships between energy balance and postpartum reproductive function in dairy cattle. J Dairy Sci 1989; 72: 767-783.
  • 22 Calamari L, Soriani N, Panella G, Petrera F, Minuti A, Trevisi E. Rumination time around calving: An early signal to detect cows at greater risk of disease. J Dairy Sci 2014; 97: 3635-3647.
  • 23 Cavalieri J, Eagles VE, Ryan M, Macmillan KL. Comparison of four methods for detection of oestrus in dairy cows with resynchronised oestrous cycles. Aust VetJ 2003; 81: 422-425.
  • 24 Chanvallon A, Daviere JB, Girardot J, Lamy J-M, Leblay A. Surveillance automatisée des vêlages chez la vache laitière. Recontres autour des Recherches sur les Ruminants. 2012. Paris, France:
  • 25 Chapinal N, Veira DM, Weary DM, von Keyserlingk MA. Technical note: validation of a system for monitoring individual feeding and drinking behavior and intake in group-housed cattle. J Dairy Sci 2007; 90: 5732-5736.
  • 26 Chapinal N, Carson ME, LeBlanc SJ, Leslie KE, Godden S, Capel M, Santos JE, Overton MW, Duffield TF. The association of serum metabolites in the transition period with milk production and early-lactation reproductive performance. J Dairy Sci 2012; 95: 1301-1309.
  • 27 Chizzotti ML, Machado FS, Valente EE, Pereira LG, Campos MM, Tomich TR, Coelho SG, Ribas MN. Technical note: Validation of a system for monitoring individual feeding behavior and individual feed intake in dairy cattle. J Dairy Sci 2015; 98: 3438-3442.
  • 28 Clark CE, Lyons NA, Millapan L, Talukder S, Cronin GM, Kerrisk KL, Garcia SC. Rumination and activity levels as predictors of calving for dairy cows. Animal 2015; 9: 691-695.
  • 29 Claycomb RW, Delwiche MJ. Biosensor for on-line measurement of bovine progesterone during milking. Biosens Bioelectron 1998; 13: 1173-1180.
  • 30 Cunningham M, Martz F, Merilan C. Effect of drinking-water temperature upon ruminant digestion, intraruminal temperature, and water consumption of nonlactating dairy cows. J Dairy Sci 1964; 47: 382-385.
  • 31 Dado R, Allen M. Continuous computer acquisition of feed and water intakes, chewing, reticular motility, and ruminal pH of cattle. J Dairy Sci 1993; 76: 1589-1600.
  • 32 Dado RG, Allen MS. Intake limitations, feeding behavior, and rumen function of cows challenged with rumen fill from dietary fiber or inert bulk. J Dairy Sci 1995; 78: 118-133.
  • 33 Dargatz DA, Dewell GA, Mortimer RG. Calving and calving management of beef cows and heifers on cow-calf operations in the United States. Theriogenology 2004; 61: 997-1007.
  • 34 De Kruif A, Mansfeld R, Hoedemaker M. Tierärztliche Bestandsbetreuung beim Milchrind.. Stuttgart: Enke; 2014
  • 35 Delwiche M, Tang X, BonDurant R, Munro C. Estrus detection with a progesterone biosensor. Transactions of the ASAE 2001; 44: 2003-2008.
  • 36 Delwiche M, Tang X, BonDurant R, Munro C. Improved biosensor for measurement of progesterone in bovine milk. Transactions of the ASAE 2001; 44: 1997-2002.
  • 37 DeVries T, Von Keyserlingk M, Weary D, Beauchemin K. Measuring the feeding behavior of lactating dairy cows in early to peak lactation. J Dairy Sci 2003; 86: 3354-3361.
  • 38 DeVries TJ, von Keyserlingk MAG, Weary DM, Beauchemin KA. Technical note: Validation of a system for monitoring feeding behavior of dairy cows. J Dairy Sci 2003; 86: 3571-3574.
  • 39 Dickinson RA, Morton JM, Beggs DS, Anderson GA, Pyman MF, Mansell PD, Blackwood CB. An automated walk-over weighing system as a tool for measuring liveweight change in lactating dairy cows. J Dairy Sci 2013; 96: 4477-4486.
  • 40 Dietrich O. Etablierung einer neuen Methode zur automatisierten Brunsterkennung beim Rind. Diss med vet. Ludwig-Maximilians-Universität München; 2012
  • 41 Dippon M. Zuverlässigkeit und Praktikabilität der Geburtsüberwachung beim Rind mittels eines automatischen Geburtsmeldesystems. Diss med vet. Ludwig-Maximilians-Universität München; 2015
  • 42 Dirksen G, Hagert-Theen C, Alexander-Katz M, Berger A. Stoffwechselüberwachung bei Kühen in der Hochlaktation anhand von Milchparametern. I: Tagesmilchmenge, Fett- und Eiweißkonzentration, Fett-Eiweiß-Quotient, Harnstoffkonzentration. Tierärztliche Rundschau 1997; 52: 319-324.
  • 43 Diskin MG, Sreenan JM. Expression and detection of oestrus in cattle. Reprod Nutr Dev 2000; 40: 481-491.
  • 44 Döcke F. Veterinärmedizinsche Endokrinologie. Fertilitätsstörungen beim weiblichen Rind.. Grunert E, Berchtold M. Jena: Fischer; 1994: 74 ff
  • 45 Dohoo IR, Wayne Martin S, Meek AH, Sandals WCD. Disease, production and culling in Holstein-Friesian cows I. The data. Prev Vet Med 1983; 1: 321-334.
  • 46 Dohoo IR, Martin SW. Subclinical ketosis: prevalence and associations with production and disease. Can J Comp Med 1984; 48: 1-5.
  • 47 Dransfield MB, Nebel RL, Pearson RE, Warnick LD. Timing of insemination for dairy cows identified in estrus by a radiotelemetric estrus detection system. J Dairy Sci 1998; 81: 1874-1882.
  • 48 Dubuc J, Duffield TF, Leslie KE, Walton JS, LeBlanc SJ. Risk factors and effects of postpartum anovulation in dairy cows. J Dairy Sci 2012; 95: 1845-1854.
  • 49 Duffield T. Subclinical ketosis in lactating dairy cattle. Vet Clin North Am Food Anim Pract 2000; 16: 231-253.
  • 50 Duffield T, Lissemore K, McBride B, Leslie K. Impact of hyperketonemia in early lactation dairy cows on health and production. J Dairy Sci 2009; 92: 571-580.
  • 51 Duffield TF, Sandals D, Leslie KE, Lissemore K, McBride BW, Lumsden JH, Dick P, Bagg R. Efficacy of monensin for the prevention of subclinical ketosis in lactating dairy cows. J Dairy Sci 1998; 81: 2866-2873.
  • 52 Edwards JL, Tozer PR. Using activity and milk yield as predictors of fresh cow disorders. J Dairy Sci 2004; 87: 524-531.
  • 53 Eradus WJ, Rossing W, Hogewerf PH, Benders E. Signal processing of activity data for oestrus detection in dairy cattle. Proc Int Symp Prospects for Automatic Milking. 1992. Wageningen, the Netherlands:
  • 54 Esslemont RJ, Glencross RG, Bryant MJ, Pope GS. A quantitative study of pre-ovulatory behaviour in cattle (British Friesian heifers). Appl Anim Ethol 1980; 6: 1-17.
  • 55 Firk R, Stamer E, Junge W, Krieter J. Automation of oestrus detection in dairy cows: a review. Livestock Production Science 2002; 75: 219-232.
  • 56 Fischer A, Luginbühl T, Delattre L, Delouard J, Faverdin P. Rear shape in 3 dimensions summarized by principal component analysis is a good predictor of body condition score in Holstein dairy cows. J Dairy Sci 2015; 98: 4465-4476.
  • 57 Friggens NC, Chagunda MGG. Prediction of the reproductive status of cattle on the basis of milk progesterone measures: model description. Theriogenology 2005; 64: 155-190.
  • 58 Friggens NC, Bjerring M, Ridder C, Højsgaard S, Larsen T. Improved detection of reproductive status in dairy cows using milk progesterone measurements. Reprod Domest Anim 2008; 43: 113-121.
  • 59 Galon N. The use of pedometry for estrus detection in dairy cows in Israel. J Reprod Dev 2010; 56 Suppl: S48-52.
  • 60 Gasteiner J, Fallast M, Rosenkranz S, Häusler J, Schneider K, Guggenberger T. Zum Einsatz einer intraruminalen pH- Datenmesseinheit mit kabelloser Datenübertragung bei Rindern unter verschiedenen Fütterungsbedingungen. Wiener Tierärztliche Monatsschrift, Vet Med Austria 2009; 96: 188-194.
  • 61 Gasteiner J, Boswerger B, Guggenberger T. Erfahrungen zum praktischen Einsatz des Pansensensors auf Milchviehbetrieben. Prakt Tierarzt 2012; 93: 730-739.
  • 62 Goldhawk C, Chapinal N, Veira DM, Weary DM, von Keyserlingk MA. Prepartum feeding behavior is an early indicator of subclinical ketosis. J Dairy Sci 2009; 92: 4971-4977.
  • 63 Gonzalez LA, Tolkamp BJ, Coffey MP, Ferret A, Kyriazakis I. Changes in feeding behavior as possible indicators for the automatic monitoring of health disorders in dairy cows. J Dairy Sci 2008; 91: 1017-1028.
  • 64 Grieve D, Korver S, Rijpkema Y, Hof G. Relationship between milk composition and some nutritional parameters in early lactation. Livestock Production Science 1986; 14: 239-254.
  • 65 Halachmi I, Polak P, Roberts DJ, Klopcic M. Cow body shape and automation of condition scoring. J Dairy Sci 2008; 91: 4444-4451.
  • 66 Hamann J, Krömker V. Potential of specific milk composition variables for cow health management. Livestock Production Science 1997; 48: 201-208.
  • 67 Heuer C, Schukken YH, Dobbelaar P. Postpartum body condition score and results from the first test day milk as predictors of disease, fertility, yield, and culling in commercial dairy herds. J Dairy Sci 1999; 82: 295-304.
  • 68 Heuer C, Van Straalen W, Schukken Y, Dirkzwager A, Noordhuizen J. Prediction of energy balance in a high yielding dairy herd in early lactation: model development and precision. Livestock Production Science 2000; 65: 91-105.
  • 69 Heuwieser W, Mansfeld R. Brunstbeobachtung beim Rind. Milchpraxis 1995; 33: 75-79.
  • 70 Hofmann W. Rinderkrankheiten. Band 1.. Stuttgart: Ulmer; 1992
  • 71 Hungate RE. The Rumen and its Microbes.. New York, London: Academic Press; 1966
  • 72 Hurnik JF, King GJ, Robertson HA. Estrous and related behaviour in postpartum Holstein cows. Appl Anim Ethol 1975; 2: 55-68.
  • 73 Huybrechts T, Mertens K, De Baerdemaeker J, De Ketelaere B, Saeys W. Early warnings from automatic milk yield monitoring with online synergistic control. J Dairy Sci 2014; 97: 3371-3381.
  • 74 Huzzey JM, Veira DM, Weary DM, von Keyserlingk MAG. Prepartum behavior and dry matter intake identify dairy cows at risk for metritis. J Dairy Sci 2007; 90: 3220-3233.
  • 75 ICAR. International agreement of recording practices: guidelines approved by the General Assembly held in Berlin, Germany 2014.
  • 76 Inchaisri C, Jorritsma R, Vos PLAM, van der Weijden GC, Hogeveen H. Economic consequences of reproductive performance in dairy cattle. Theriogenology 2010; 74: 835-846.
  • 77 Janowitz U. Fruchtbarkeitsstörungen und hormonelle Zyklussteuerung. Milchrindtag, Brandenburg. 2009
  • 78 Jensen MB. Behaviour around the time of calving in dairy cows. Appl Anim Behav Sci 2012; 139: 195-202.
  • 79 Jónsson R, Blanke M, Poulsen NK, Caponetti F, Højsgaard S. Oestrus detection in dairy cows from activity and lying data using on-line individual models. Computers and Electronics in Agriculture 2011; 76: 6-15.
  • 80 Jung M. Brunstbeobachtung: Welche Möglichkeiten bieten Technische Hilfsmittel?. Milchrindtag, Brandenburg. 2009
  • 81 Kawamura S, Kawasaki M, Nakatsuji H, Natsuga M. Near-infrared spectroscopic sensing system for online monitoring of milk quality during milking. Sensing and Instrumentation for Food Quality and Safety 2007; 1: 37-43.
  • 82 Kawasaki M, Kawamura S, Tsukahara M, Morita S, Komiya M, Natsuga M. Near-infrared spectroscopic sensing system for on-line milk quality assessment in a milking robot. Computers and Electronics in Agriculture 2008; 63: 22-27.
  • 83 Kiddy CA. Variation in physical activity as an indication of estrus in dairy cows. J Dairy Sci 1977; 60: 235-243.
  • 84 Kilgour R, Skarsholt BH, Smith JF, Bremner KJ, Morrison MCL. Observations on the behaviour and factors influencing the sexually-active group in cattle. Proceedings of the New Zealand Society of Animal Production 1977; 37: 128-135.
  • 85 King JO. The effect of oestrus on milk production in cows. Vet Rec 1977; 101: 107-108.
  • 86 Kokin E, Praks J, Veermäe I, Poikalainen V, Vallas M. IceTag3D™ accelerometric device in cattle lameness detection. Agronomy Research 2014; 12: 223-230.
  • 87 Krukowski M. Automatic determination of body condition score of dairy cows from 3D images processing and pattern recognitions in images from a time-of-flight camera. Computer Science and Communication. Stockholm, Sweden: KTH Royal Institute of Technology; 2009
  • 88 KTBL. Daten für die Betriebsplanung in der Landwirtschaft 2010/11. KTBL-Datensammlung. Kuratorium für Technik und Bauwesen in der Landwirtschaft. 2010: 541
  • 89 Landeskuratorium der Erzeugerringe für tierische Veredelung in Bayern e. V. Leistungs- und Qualitätsprüfung in der Rinderzucht in Bayern 2004. Ergebnisse und Auswertungen. Jahresbericht. 2004: 16.
  • 90 Landeskuratorium der Erzeugerringe für tierische Veredelung in Bayern e. V. Leistungs -und Qualitätsprüfung in der Rinderzucht in Bayern 2015. Ergebnisse und Auswertungen. Jahresbericht 2015; 16
  • 91 Law RA, Young FJ, Patterson DC, Kilpatrick DJ, Wylie ARG, Mayne CS. Effect of dietary protein content on estrous behavior of dairy cows during early and mid lactation. J Dairy Sci 2009; 92: 1013-1022.
  • 92 Liang D, Wood CL, McQuerry KJ, Ray DL, Clark JD, Bewley JM. Influence of breed, milk production, season, and ambient temperature on dairy cow reticulorumen temperature. J Dairy Sci 2013; 96: 5072-5081.
  • 93 Lovendahl P, Chagunda MG. On the use of physical activity monitoring for estrus detection in dairy cows. J Dairy Sci 2010; 93: 249-259.
  • 94 Lucy MC. Reproductive loss in high-producing dairy cattle: where will it end?. J Dairy Sci 2001; 84: 1277-1293.
  • 95 Luginbuhl JM, Pond KR, Russ JC, Burns JC. A simple electronic device and computer interface system for monitoring chewing behavior of stall-fed ruminant animals. J Dairy Sci 1987; 70: 1307-1312.
  • 96 Lukas J, Reneau J, Wallace R, Hawkins D, Munoz-Zanzi C. A novel method of analyzing daily milk production and electrical conductivity to predict disease onset. J Dairy Sci 2009; 92: 5964-5976.
  • 97 Lyimo ZC, Nielen M, Ouweltjes W, Kruip TAM, Eerdenburg FJCMv. Relationship among estradiol, cortisol and intensity of estrous behavior in dairy cattle. Theriogenology 2000; 53: 1783-1795.
  • 98 Marchesi G, Leonardi S, Tangorra FM, Calcante A, Beretta E, Pofcher E, Lazzari M. Evaluation of an electronic system for automatic calving detection on a dairy farm. Anim Prod Sci 2013; 53: 1112-1114.
  • 99 Matsui K, Okubo T. A method for quantification of jaw movements suitable for use on free-ranging cattle. Appl Anim Behav Sci 1991; 32: 107-116.
  • 100 Matsui K. A new ambulatory data logger for a long-term determination of grazing and rumination behaviour on free-ranging cattle, sheep and goats. Appl Anim Behav Sci 1994; 39: 123-130.
  • 101 Maulfair D, Zanton G, Fustini M, Heinrichs A. Effect of feed sorting on chewing behavior, production, and rumen fermentation in lactating dairy cows. J Dairy Sci 2010; 93: 4791-4803.
  • 102 McArt JAA, Nydam DV, Oetzel GR. Epidemiology of subclinical ketosis in early lactation dairy cattle. J Dairy Sci 2012; 95: 5056-5066.
  • 103 McCorkell R, Wynne-Edwards K, Windeyer C, Schaefer A. Limited efficacy of Fever Tag® temperature sensing ear tags in calves with naturally occurring bovine respiratory disease or induced bovine viral diarrhea virus infection. Can VetJ 2014; 55: 688-690.
  • 104 McGowan J, Burke C, Jago J. Validation of a technology for objectively measuring behaviour in dairy cows and its application for oestrous detection. Proceedings of the New Zealand Society of Animal Production. 2007
  • 105 McLaren CJ, Lissemore KD, Duffield TF, Leslie KE, Kelton DF, Grexton B. The relationship between herd level disease incidence and a return over feed index in Ontario dairy herds. Can VetJ 2006; 47: 767-773.
  • 106 Mee JF. Managing the dairy cow at calving time. Vet Clin North Am Food Anim Pract 2004; 20: 521-546.
  • 107 Mee JF. Newborn dairy calf management. Vet Clin North Am Food Anim Pract 2008; 24: 1-17.
  • 108 Mee JF. Why do so many calves die on modern dairy farms and what can we do about calf welfare in the future?. Animals: an open access journal from MDPI 2013; 3: 1036-1057.
  • 109 Michaelis I, Hasenpusch E, Heuwieser W. Estrus detection in dairy cattle: changes after the introduction of an automated activity monitoring system?. Tierärztl Prax 2013; 41(G): 159-165.
  • 110 Miedema HM, Cockram MS, Dwyer CM, Macrae AI. Changes in the behaviour of dairy cows during the 24 h before normal calving compared with behaviour during late pregnancy. Appl Anim Behav Sci 2011; 131: 8-14.
  • 111 Mottram T, Velasco-Garcia M, Berry P, Richards P, Ghesquiere J, Masson L. Automatic on-line analysis of milk constituents (urea, ketones, enzymes and hormones) using biosensors. Comp Clin Pathol 2002; 11: 50-58.
  • 112 Nebel RL, Dransfield MG, Jobst SM, Bame JH. Automated electronic systems for the detection of oestrus and timing of AI in cattle. Anim Reprod Sci. 2000 60-61. 713-723.
  • 113 Nielsen NI, Friggens NC, Chagunda MGG, Ingvartsen KL. Predicting risk of ketosis in dairy cows using in-line measurements of beta-hydroxybutyrate: a biological model. J Dairy Sci 2005; 88: 2441-2453.
  • 114 Ospina P, Nydam D, Stokol T, Overton T. Association between the proportion of sampled transition cows with increased nonesterified fatty acids and β-hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. J Dairy Sci 2010; 93: 3595-3601.
  • 115 Ospina P, Nydam D, Stokol T, Overton T. Associations of elevated nonesterified fatty acids and beta-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States. J Dairy Sci 2010; 93: 1596-1603.
  • 116 Pahl C, Hartung E, Grothmann A, Mahlkow-Nerge K, Haeussermann A. Rumination activity of dairy cows in the 24 hours before and after calving. J Dairy Sci 2014; 97: 6935-6941.
  • 117 Pahl C, Hartung E, Mahlkow-Nerge K, Haeussermann A. Feeding characteristics and rumination time of dairy cows around estrus. J Dairy Sci 2015; 98: 148-154.
  • 118 Palombi C, Paolucci M, Stradaioli G, Corubolo M, Pascolo PB, Monaci M. Evaluation of remote monitoring of parturition in dairy cattle as a new tool for calving management. BMC Veterinary Research 2013; 9: 191-191.
  • 119 Peter A, Bosu W. Postpartum ovarian activity in dairy cows: correlation between behavioral estrus, pedometer measurements and ovulations. Theriogenology 1986; 26: 111-115.
  • 120 Pohl A, Heuwieser W, Burfeind O. Technical note: Assessment of milk temperature measured by automatic milking systems as an indicator of body temperature and fever in dairy cows. J Dairy Sci 2014; 97: 4333-4339.
  • 121 Ramírez-Iglesia LN, Viera Rosales FB, Martínez JA, Díaz de Ramírez A, Morillo Luque JG, Román R, Soto-Belloso E. Grupos sexuales activos en vacas posparto de ganadería mestiza de doble propósito. Zootecnia Tropical 2006; 24: 281-295.
  • 122 Reith S, Hoy S. Relationship between daily rumination time and estrus of dairy cows. J Dairy Sci 2012; 95: 6416-6420.
  • 123 Reith S, Brandt H, Hoy S. Simultaneous analysis of activity and rumination time, based on collar-mounted sensor technology, of dairy cows over the peri-estrus period. Livestock Science 2014; 170: 219-227.
  • 124 Roelofs J, Lopez-Gatius F, Hunter RH, van Eerdenburg FJ, Hanzen C. When is a cow in estrus? Clinical and practical aspects. Theriogenology 2010; 74: 327-344.
  • 125 Roelofs JB, van Eerdenburg FJ, Soede NM, Kemp B. Pedometer readings for estrous detection and as predictor for time of ovulation in dairy cattle. Theriogenology 2005; 64: 1690-1703.
  • 126 Roelofs JB, van Eerdenburg FJCM, Soede NM, Kemp B. Various behavioral signs of estrous and their relationship with time of ovulation in dairy cattle. Theriogenology 2005; 63: 1366-1377.
  • 127 Roelofs JB, Van Eerdenburg FJ, Hazeleger W, Soede NM, Kemp B. Relationship between progesterone concentrations in milk and blood and time of ovulation in dairy cattle. Anim Reprod Sci 2006; 91: 337-343.
  • 128 Rorie RW, Bilby TR, Lester TD. Application of electronic estrus detection technologies to reproductive management of cattle. Theriogenology 2002; 57: 137-148.
  • 129 Rutten C, Velthuis A, Steeneveld W, Hogeveen H. Invited review: Sensors to support health management on dairy farms. J Dairy Sci 2013; 96: 1928-1952.
  • 130 Saint-Dizier M, Chastant-Maillard S. Towards an automated detection of oestrus in dairy cattle. Reprod Domest Anim 2012; 47: 1056-1061.
  • 131 Saint-Dizier M, Chastant-Maillard S. Methods and on-farm devices to predict calving time in cattle. Vet J 2015; 205: 349-356.
  • 132 Sakaguchi M, Fujiki R, Yabuuchi K, Takahashi Y, Aoki M. Reliability of estrous detection in Holstein heifers using a radiotelemetric pedometer located on the neck or legs under different rearing conditions. J Reprod Dev 2007; 53: 819-828.
  • 133 Salau J, Haas J, Junge W, Bauer U, Harms J, Bieletzki S. Feasibility of automated body trait determination using the SR4K time-of-flight camera in cow barns. Springerplus 2014; 3: 225.
  • 134 Salau J, Bauer U, Haas JH, Thaller G, Harms J, Junge W. Quantification of the effects of fur, fur color, and velocity on Time-Of-Flight technology in dairy production. Springerplus 2015; 4: 144.
  • 135 Saumande J. Electronic detection of oestrus in postpartum dairy cows: efficiency and accuracy of the DEC® (showheat) system. Livestock Production Science 2002; 77: 265-271.
  • 136 Schirmann K, von Keyserlingk MAG, Weary DM, Veira DM, Heuwieser W. Technical note: Validation of a system for monitoring rumination in dairy cows. J Dairy Sci 2009; 92: 6052-6055.
  • 137 Schirmann K, Chapinal N, Weary D, Heuwieser W, Von Keyserlingk M. Rumination and its relationship to feeding and lying behavior in Holstein dairy cows. J Dairy Sci 2012; 95: 3212-3217.
  • 138 Schirmann K, Chapinal N, Weary DM, Vickers L, von Keyserlingk MAG. Short communication: Rumination and feeding behavior before and after calving in dairy cows. J Dairy Sci 2013; 96: 7088-7092.
  • 139 Schneider K, Gasteiner J, Guggenberger T, Urdl M, Steiner S, Neidl A, Linhart N, Baumgartner W. Vergleichende Untersuchungen zur Messung des pH- Wertes im Vormagensystem von Rindern. Berl Münch Tierärztl Wochenschr 2010; 123: 406-412.
  • 140 Schofield SA, Phillips CJC, Owens AR. Variation in the milk production, activity rate and electrical impedance of cervical mucus over the oestrous period of dairy cows. Anim Reprod Sci 1991; 24: 231-248.
  • 141 Silper BF, Madureira AML, Kaur M, Burnett TA, Cerri RLA. Short communication: Comparison of estrus characteristics in Holstein heifers by 2 activity monitoring systems. J Dairy Sci 2015; 98: 3158-3165.
  • 142 Simensen E, Halse K, Gillund P, Lutnaes B. Ketosis treatment and milk yield in dairy cows related to milk acetoacetate levels. Acta Vet Scand 1990; 31: 433-440.
  • 143 Small JA, Kennedy AD, Kahane SH. Core body temperature monitoring with passive transponder boluses in beef heifers. Canadian Journal of Animal Science 2008; 88: 225-235.
  • 144 Smith BI, Risco CA. Management of periparturient disorders in dairy cattle. Vet Clin North Am Food Anim Pract 2005; 21: 503-521.
  • 145 Soriani N, Trevisi E, Calamari L. Relationships between rumination time, metabolic conditions, and health status in dairy cows during the transition period. J Anim Sci 2012; 90: 4544-4554.
  • 146 Soriani N, Panella G, Calamari L. Rumination time during the summer season and its relationships with metabolic conditions and milk production. J Dairy Sci 2013; 96: 5082-5094.
  • 147 Stangaferro ML, Wijma R, Caixeta LS, Al-Abri MA, Giordano JO. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part II. Mastitis. J Dairy Sci. 2016 10.3168/jds.2016-10908.
  • 148 Staufenbiel R. Stoffwechselerkrankungen. Tiergesundheits- und Tierkrankheitslehre.. Busch W, Methling W, Amselgruber WM. Stuttgart: Parey; 2004: 334
  • 149 Steen A, Osteras O, Gronstol H. Evaluation of additional acetone and urea analyses, and of the fat-lactose-quotient in cow milk samples in the herd recording system in Norway. Zentralbl Veterinarmed A 1996; 43: 181-191.
  • 150 Sveberg G, Refsdal AO, Erhard HW, Kommisrud E, Aldrin M, Tvete IF, Buckley F, Waldmann A, Ropstad E. Sexually active groups in cattle - a novel estrus sign. J Dairy Sci 2013; 96: 4375-4386.
  • 151 Thatcher W, Guzeloglu A, Meikle A, Kamimura S, Bilby T, Kowalski A, Badinga L, Pershing R, Bartolome J, Santos J. Regulation of embryo survival in cattle. Reprod Suppl 2003; 61: 253-266.
  • 152 Thorup VM, Edwards D, Friggens NC. On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score. J Dairy Sci 2012; 95: 1784-1793.
  • 153 Timsit E, Assié S, Quiniou R, Seegers H, Bareille N. Early detection of bovine respiratory disease in young bulls using reticulo-rumen temperature boluses. Vet J 2011; 190: 136-142.
  • 154 Titler M, Maquivar MG, Bas S, Rajala-Schultz PJ, Gordon E, McCullough K, Federico P, Schuenemann GM. Prediction of parturition in Holstein dairy cattle using electronic data loggers. J Dairy Sci 2015; 98: 5304-5312.
  • 155 Uetake K. Newborn calf welfare: a review focusing on mortality rates. Anim Sci J 2013; 84: 101-105.
  • 156 Van Eerdenburg FJ, Loeffler HS, van Vliet JH. Detection of oestrus in dairy cows: a new approach to an old problem. Vet Q 1996; 18: 52-54.
  • 157 Van Vliet JH, Van Eerdenburg FJCM. Sexual activities and oestrus detection in lactating Holstein cows. Appl Anim Behav Sci 1996; 50: 57-69.
  • 158 Vasseur E, Borderas F, Cue RI, Lefebvre D, Pellerin D, Rushen J, Wade KM, de Passille AM. A survey of dairy calf management practices in Canada that affect animal welfare. J Dairy Sci 2010; 93: 1307-1315.
  • 159 Welch JG, Smith AM. Forage quality and rumination time in cattle. J Dairy Sci 1970; 53: 797-800.
  • 160 Williamson NB, Morris RS, Blood DC, Cannon CM, Wright PJ. A study of oestrous behaviour and oestrus detection methods in a large commercial dairy herd. II. Oestrous signs and behaviour patterns. Vet Rec 1972; 91: 58-62.
  • 161 Wolfger B, Timsit E, Pajor EA, Cook N, Barkema HW, Orsel K. Technical note: Accuracy of an ear tag-attached accelerometer to monitor rumination and feeding behavior in feedlot cattle. J Anim Sci 2015; 93: 3164-3168.
  • 162 Xu ZZ, McKnight DJ, Vishwanath R, Pitt CJ, Burton LJ. Estrus detection using radiotelemetry or visual observation and tail painting for dairy cows on pasture. J Dairy Sci 1998; 81: 2890-2896.