Tierarztl Prax Ausg G Grosstiere Nutztiere 2018; 46(03): 178-189
DOI: 10.15653/TPG-180144
Übersichtsartikel – Review Article
Schattauer GmbH

Inhaltsstoffe des bovinen Kolostrums – eine Übersicht[*]

Substances in the bovine colostrum – a survey
Sebastian Ganz
1   Klinik für Geburtshilfe, Gynäkologie und Andrologie der Groß- und Kleintiere, Justus-Liebig-Universität Gießen
,
Michael Bülte
2   Institut für Tierärztliche Nahrungsmittelkunde (Professur für Tierärztliche Nahrungsmittelkunde) Justus-Liebig-Universität Gießen
,
Zdzislaw Gajewski
3   Department of Large Animal Diseases with the Clinic, Faculty of Veterinary Medicine, University of Life Sciences, Warsaw, Poland
,
Axel Wehrend
1   Klinik für Geburtshilfe, Gynäkologie und Andrologie der Groß- und Kleintiere, Justus-Liebig-Universität Gießen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Eingegangen: 16. Januar 2018

Akzeptiert nach Revision: 14. Mai 2018

Publikationsdatum:
14. Juni 2018 (online)

Zusammenfassung

Die am besten untersuchten Inhaltsstoffe des Kolostrums sind die Immunglobuline. Sie werden über Pinozytose im Dünndarm des Neonaten aufgenommen. Eine rezeptorvermittelte Aufnahme über den Fc-Rezeptor ist beim Kalb nicht von derartiger Bedeutung wie bei anderen Spezies, doch spielt dieser Rezeptor eine zentrale Rolle beim Transport der Immunglobuline aus dem Blut in das Euter und damit in das Kolostrum. Durch diesen rezeptorvermittelten Transport werden in der Phase der Kolostrogenese, die ca. 8 Wochen ante partum einsetzt, bis zu 500 g Immunglobuline pro Tag transferiert. Auch andere Inhaltsstoffe des Kolostrums entfalten eine biologische Aktivität. So beeinflussen diverse Wachstumsfaktoren, wie IGF-1, EGF oder TGF, die Proliferation und Ausdifferenzierung von Darmepithelzellen des Neonaten und hierdurch die Ausreifung des Magen-Darm-Trakts. Im Euter wirken sie bei den Umbauprozessen des Epithels mit und unterstützen den maternalen Organismus bei der Adaption an die verschiedenen Laktationsstadien. Mit dem Kolostrum übertragene Leukozyten besitzen ein immunologisches Gedächtnis und können im Organismus des Neonaten direkt kompetente zelluläre Immunantworten gegen Krankheitserreger induzieren, mit denen sich das Muttertier auseinandergesetzt hat. Sie werden über zelluläre Migration im proximalen Dünndarm des Neonaten aufgenommen und gelangen so in die Zirkulation. Kolostrale Enzyme besitzen zum einen diagnostischen Wert zur Beurteilung einer ausreichenden Kolostrumversorgung des Kalbes (z. B. γ-Glutamyl-Transferase) zum anderen unspezifisches antimikrobielles Potenzial (z. B. Laktatperoxidase, Laktoferrin, Lysozyme). Die im Kolostrum enthaltenen Vitamine, Fette, Proteine sowie Mengen- und Spurenelemente sind für den Neonaten in den ersten Stunden post natum als essenzielle Nährstoffquellen von außerordentlicher Bedeutung, da sich die Anforderungen an den Organismus von präzu postnatal sehr stark ändern. Des Weiteren finden sich im Erstkolostrum Hormone, deren genaue Bedeutung für das neugeborene Kalb zum größten Teil noch nicht bekannt ist.

Summary

The best studied substances in bovine colostrum are the immunoglobulins. They are absorbed in the small intestine of the neonate by pinocytosis. The Fc-receptor is not highly involved in this process in calves compared to other species. However, this receptor plays a crucial role in the transport of immunoglobulins from the circulation of the dam to the udder and, therefore, into the colostrum. During colostrogenesis, which starts up to 8 weeks prior to parturition, up to 500 g of immunoglobulins are transferred daily by this process. In addition, other components of the bovine colostrum have biological activity. Colostrum-derived growth factors, including IGF-1, EGF and TGF, influence the differentiation of the epithelial cells of the gastrointestinal tract and, therefore, its development. In the udder of the dam, they are involved in various mechanisms of adaption throughout the lactation period. Colostral leucocytes are also transported from the colostrum into the circulation of the offspring, this by a process termed cellular migration. These cells have a specific immunological memory and support the calf in the development of an immune response against specific pathogens the dam was exposed to earlier. Colostral enzymes can be used as an indirect parameter to control for an adequate colostrum supply of the calf (e.g. γ-glutamyltransferase) or have an unspecific antimicrobial potential capacity (e.g. lactate peroxidase, lactoferrin, lysozymes). Vitamins, fats, proteins and mass and trace elements in the colostrum are essential nutrients for the bovine neonate because of the great change in the requirements for the neonatal organism from preto postnatal life. The impact of hormones and other components of the colostrum is still mostly unclear. The composition of the colostrum in the individual cow is influenced by numerous factors, including the number of calvings, the amount of colostrum formed and breed of the dam.

* Herrn Prof. Dr. Dr. h. c. mult. Hartwig Bostedt zum 80. Geburtstag gewidmet.


 
  • Literatur

  • 1 Ai Z, Yumei Z, Titi Y, Qinghai S, Xiaohong K, Peiyu W. The concentrations of some hormones and growth factors in bovine and human colostrums. Short communication. Int J Dairy Technol 2012; 65 (04) 507-510.
  • 2 Aldridge B, Bichi E, Lowe J. The impact of colostrum on the microbiological health of the developing bovine intestinal tract. Proceedings of the World Buiatrics Congress Dublin 2016; 242-243.
  • 3 Aranda P, Sanchez L, Perez MD, Ena JM, Calvo M. Insulin in bovine colostrum and milk: evolution throughout lactation and binding to caseins. J Dairy Sci 1991; 74 (12) 4320-4325.
  • 4 Arias MA, Rey JENores, Vita N, Stelter F, Borysiewicz LK, Ferrara P, Labeta MO. Cutting edge: human B cell function is regulated by interaction with soluble CD14: opposite effects on IgG1 and IgE production. J Immunol 2000; 164 (07) 3480-3486.
  • 5 Baintner K. Transmission of antibodies from mother to young. Evolutionary strategies in a proteolytic environment. Vet Immunol Immunopathol 2007; 117 (03) 153-161.
  • 6 Barrington GM, McFadden TB, Huyler MT, Besser TE. Regulation of colostrogenesis in cattle. Livestock Production Science 2001; 70 (1–2): 95-104.
  • 7 Bastian M, Holsteg M, Hanke-Robinson H, Duchow K, Cussler K. Bovine Neonatal Pancytopenia. Is this alloimmune syndrome caused by vaccineinduced alloreactive antibodies? Vaccine 2011; 29 (32) 5267-5275.
  • 8 Baumrucker CR, Bruckmaier RM. Colostrogenesis. IgG1 transcytosis mechanisms. J Mammary Gland Biol Neoplasia 2014; 19 (01) 103-117.
  • 9 Beam AL, Lombard JE, Kopral CA, Garber LP, Winter AL, Hicks JA, Schlater JL. Prevalence of failure of passive transfer of immunity in newborn heifer calves and associated management practices on US dairy operations. J Dairy Sci 2009; 92 (08) 3973-3980.
  • 10 Bender P, Bostedt H. Determination of IgG and IgM levels in sera of newborn calves until the 10th day of life by ELISA and description of their correlation to total plasma protein concentration and GGT activity. Dtsch Tierarztl Wochenschr 2009; (02) 44-52.
  • 11 Bittrich S, Philipona C, Hammon HM, Romé V, Guilloteau P, Blum JW. Preterm as compared with full-term neonatal calves are characterized by morphological and functional immaturity of the small intestine. J Dairy Sci 2004; 87 (06) 1786-1795.
  • 12 Blum JW. Nutritional physiology of neonatal calves. J Anim Physiol Anim Nutr (Berl) 2006; 90 (1–2): 1-11.
  • 13 Blum JW, Baumrucker CR. Colostral and milk insulin-like growth factor and related substances. Mammary gland and neonatal (intestinal and systemic) targets. Domest Anim Endocrinol 2002; 23 (1–2): 101-110.
  • 14 Blum JW, Hadorn U, Sallmann HP, Schuep W. Delaying colostrum intake by one day impairs plasma lipid, essential fatty acid, carotene, retinol and alpha-tocopherol status in neonatal calves. J Nutr 1997; 127 (10) 2024-2029.
  • 15 Blum JW, Hammon H. Colostrum effects on the gastrointestinal tract, and on nutritional, endocrine and metabolic parameters in neonatal calves. Livestock Production Science 2000; 66 (02) 151-159.
  • 16 Boyd JW. Relationships between acid-base balance, serum composition and colostrum absorption in newborn calves. Br Vet J 1989; 145 (03) 249-256.
  • 17 Brambell FWR. The transmission of passive immunity from mother to young. North Holland Research Monographs Frontiers of Biology. 1970: 18.
  • 18 Brandon MR, Lascelles AK. The Effect of prepartum milking on the transfer of immunoglobulin into mammary secretion of cows. Immunol Cell Biol 1975; 53 (03) 197-204.
  • 19 Brandon MR, Watson DL, Lascelles AK. The mechanism of transfer of immunoglobulin into mammary secretion of cows. Aust J Exp Biol Med 1971; 49 (06) 613-623.
  • 20 Brody EP. Biological activities of bovine glycomacropeptide. Br J Nutr 2000; 84 (Suppl. 01) S39-46.
  • 21 Broughton CW, Lecce JG. Electron-microscopic studies of the jejunal epithelium from neonatal pigs fed different diets. J Nutr 1970; (100): 445-449.
  • 22 Buckley JD, Abbott MJ, Brinkworth GD, Whyte PBD. Bovine colostrum supplementation during endurance running training improves recovery, but not performance. J Sci Med Sport 2002; 05 (02) 65-79.
  • 23 Butler JE. Bovine immunoglobulins. An augmented review. Vet Immunol Immunopathol 1983; 04 (1–2): 43-152.
  • 24 Butler JE. Immunoglobulin diversity, B-cell and antibody repertoire development in large farm animals. Rev Sci Tech 1998; 17 (01) 43-70.
  • 25 Carlsson LCT, Weström BR, Karlsson BW. Intestinal absorption of proteins by the neonatal piglet fed on sow’s colostrum with either natural or experimentally eliminated trypsin-inhibiting activity. Neonatology 1980; 38 (5–6): 309-320.
  • 26 Cervenak J, Kacskovics I. The neonatal Fc receptor plays a crucial role in the metabolism of IgG in livestock animals. Vet Immunol Immunopathol 2009; 128 (1–3): 171-177.
  • 27 Conneely M, Berry DP, Sayers R, Murphy JP, Lorenz I, Doherty ML, Kennedy E. Factors associated with the concentration of immunoglobulin G in the colostrum of dairy cows. Animal 2013; 07 (11) 1824-1832.
  • 28 DeNise SK, Robison JD, Stott GH, Armstrong DV. Effects of passive immunity on subsequent production in dairy heifer. J Dairy Sci 1989; 72 (02) 552-554.
  • 29 Eger M, Horn J, Hussen J, Schuberth HJ, Scharf M, Meyer U, Dänicke S, Bostedt H, Breves G. Effects of dietary CLA supplementation, parity and different concentrate levels before calving on immunoglobulin G1, G2 and M concentrations in dairy cows. Res Vet Sci 2017; 114: 287-293.
  • 30 Elfstrand L, Lindmark-Månsson H, Paulsson M, Nyberg L, Åkesson B. Immunoglobulins, growth factors and growth hormone in bovine colostrum and the effects of processing. International Dairy Journal 2002; 12 (11) 879-887.
  • 31 Ellis JA, Hassard LE, Cortese VS, Morley PS. Effects of perinatal vaccination on humoral and cellular immune responses in cows and young calves. J Am Vet Med Assoc 1996; 208 (03) 393-400.
  • 32 Engelhardt EL, Sankar M, Wu-Wang CY, Thomas, Walker WR, Neu J. Effect of cholesterol deprivation on piglet small intestine and serum lipids. J Pediatr Gastroenterol Nutr 1991; 12 (04) 494-500.
  • 33 Filipp D, Alizadeh-Khiavi K, Richardson C, Palma A, Paredes N, Takeuchi O, Akira S, Julius M. Soluble CD14 enriched in colostrum and milk induces B cell growth and differentiation. Proc Natl Acad Sci USA 2001; 98 (02) 603-608.
  • 34 Fischer AJ, Song Y, He Z, Haines DM, Guan LL, Steele MA. Effect of delaying colostrum feeding on passive transfer and intestinal bacterial colonization in neonatal male Holstein calves. J Dairy Sci 2018; 101 (04) 3099-3109.
  • 35 Flynn A, Cashman K. Nutritional aspects of minerals in bovine and human milks. In: Advanced Dairy Chemistry. Volume 3: Lactose, Water, Salts and Vitamins. Fox PF. ed. Boston, MA: Springer US; 1997: 257-302.
  • 36 Godden S. Colostrum management for dairy calves. Vet Clin North Am Food Anim Pract 2008; 24 (01) 19-39.
  • 37 Godden SM, Haines DM, Konkol K, Peterson J. Improving passive transfer of immunoglobulins in calves. II. Interaction between feeding method and volume of colostrum fed. J Dairy Sci 2009; 92 (04) 1758-1764.
  • 38 Godden SM, Smith S, Feirtag JM, Green LR, Wells SJ, Fetrow JP. Effect of on-farm commercial batch pasteurization of colostrum on colostrum and serum immunoglobulin concentrations in dairy calves. J Dairy Sci 2003; 86 (04) 1503-1512.
  • 39 Gonzalez DD, Dus MJSantos. Bovine colostral cells-the often forgotten component of colostrum. J Am Vet Med Assoc 2017; 250 (09) 998-1005.
  • 40 Gopal PK, Gill HS. Oligosaccharides and glycoconjugates in bovine milk and colostrum. Br J Nutr 2000; 84 (S1): 666.
  • 41 Gregory NG. Effect of enhancing curd formation during the first colostrum feed on absorption of gamma glutamyl transferase by newborn calves. Aust Vet J 2003; 81 (09) 549-552.
  • 42 Guo J, Li F, He Q, Jin H, Liu M, Li S, Hu S, Xiao Y, Bi D, Li Z. Neonatal Fc receptor-mediated IgG transport across porcine intestinal epithelial cells: potentially provide the mucosal protection. DNA Cell Biol 2016; 35 (06) 301-309.
  • 43 Guy MA, McFadden TB, Cockrell DC, Besser TE. Regulation of colostrum formation in beef and dairy cows. J Dairy Sci 1994; 77 (10) 3002-3007.
  • 44 Hammon HM, Blum JW. Metabolic and endocrine traits of neonatal calves are influenced by feeding colostrum for different durations or only milk replacer. J Nutr 1998; 128 (03) 624-632.
  • 45 Heinrichs AJ, Elizondo-Salazar JA. Reducing failure of passive immunoglobulin transfer in dairy calves. Revue Med Vet 2009; 436-440.
  • 46 Herr M, Bostedt H, Failing K. IgG and IgM levels in dairy cows during the periparturient period. Theriogenology 2011; 75 (02) 377-385.
  • 47 Jeong S-G, Ham J-S, Kim D-H, Ahn C-N, Chae H-S, You Y-M, Jang A-R, Kwon I-K, Lee S-G. Physicochemical properties of colostrum by milking time of Gyeonggi Province. Korean Journal for Food Science of Animal Resources 2009; 29 (04) 445-456.
  • 48 Jürgensen L, Kaske M. The impact of warming of newborn Holstein calves on colostrum intake, blood parameters and vitality. Dissertation: Tierärztliche Hochschule Hannover; 2016
  • 49 Karl M, Staufenbiel R. Einflussfaktoren auf die Erstkolostrummenge bei Holstein-Friesian-Kühen und deren Beziehungen zur postpartalen Kalziumkonzentration. Tierarztl Prax Ausg G Grosstiere Nutztiere 2016; 44 (06) 345-354.
  • 50 Karl M, Staufenbiel R. Einflussfaktoren auf die Immunglobulinkonzentration im Erstkolostrum bei Holstein-Friesian-Milchkühen und deren Beziehung zur postpartalen Kalziumkonzentration im Blut und Kolostrum. Tierarztl Prax Ausg G Grosstiere Nutztiere 2017; 45 (06) 331-341.
  • 51 Kehoe SI, Heinrichs AJ, Moody ML, Jones CM, Long MR. Comparison of immunoglobulin G concentrations in primiparous and multiparous bovine colostrum1. The Professional Animal Scientist 2011; 27 (03) 176-180.
  • 52 Kehoe SI, Jayarao BM, Heinrichs AJ. A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. J Dairy Sci 2007; 90 (09) 4108-4116.
  • 53 Kerksick CM, Rasmussen C, Lancaster S, Starks M, Smith P, Melton C, Greenwood M, Almada A, Kreider R. Impact of differing protein sources and a creatine containing nutritional formula after 12 weeks of resistance training. Nutrition 2007; 23 (09) 647-656.
  • 54 Kon SK, Cowie AT. eds. Milk. The Mammary Gland and its Secretion. New York: Academic Press; 1961
  • 55 Korhonen H. Milk-derived bioactive peptides. From science to applications. Journal of Functional Foods 2009; 01 (02) 177-187.
  • 56 Korhonen H, Marnila P, Gill HS. Milk immunoglobulins and complement factors. Br J Nutr 2000; 84 (S1): 619.
  • 57 Korhonen HJ. Production and properties of health-promoting proteins and peptides from bovine colostrum and milk. Cell Mol Biol (Noisy-le-grand) 2013; 59 (01) 12-24.
  • 58 Kuo TT, Baker K, Yoshida M, Qiao S-W, Aveson VG, Lencer WI, Blumberg RS. Neonatal Fc receptor. From immunity to therapeutics. J Clin Immunol 2010; 30 (06) 777-789.
  • 59 Langel SN, Wark WA, Garst SN, James RE, McGilliard ML, PeterssonWolfe CS, Kanevsky-Mullarky I. Effect of feeding whole compared with cell-free colostrum on calf immune status. Vaccination response. J Dairy Sci 2016; 99 (05) 3979-3994.
  • 60 Larson BL. Immunoglobulins of the mammary secretions. Advanced Dairy Chemistry 1992; 01: 231-254.
  • 61 Lee CS, Wooding FB, Kemp P. Identification, properties, and differential counts of cell populations using electron microscopy of dry cows secretions, colostrum and milk from normal cows. J Dairy Res 1980; 47 (01) 39-50.
  • 62 Lindmark HMånsson. Bioactive proteins in bovine milk – studies on glutathione peroxidase, lactoferrin and immunoglobulins. Helena Lindmark Månsson, Swedish Dairy Association. Scheelevägen 18, SE-223 63 Lund, Sweden 2000
  • 63 Lona DV, Romero RC. Short communication: Low levels of colostral immunoglobulins in some dairy cows with placental retention. J Dairy Sci 2001; 84 (02) 389-391.
  • 64 Lucey JA, Horne DS. Milk salts. Technological significance. In: Advanced Dairy Chemistry. Volume 3: Lactose, Water, Salts and Minor Constituents. McSweeney P, Fox PF. eds. New York, NY: Springer New York; 2009: 351-389.
  • 65 Madsen BD, Rasmussen MD, Nielsen MO, Wiking L, Larsen LB. Physical properties of mammary secretions in relation to chemical changes during transition from colostrum to milk. J Dairy Res 2004; 71 (03) 263-272.
  • 66 Madureira AR, Pereira CI, Gomes AMP, Pintado ME, Xavier FMalcata. Bovine whey proteins – overview on their main biological properties. Food Research International 2007; 40 (10) 1197-1211.
  • 67 Magliani W, Polonelli L, Conti S, Salati A, Rocca PF, Cusumano V, Mancuso G, Teti G. Neonatal mouse immunity against group B streptococcal infection by maternal vaccination with recombinant antiidiotypes. Nat Med 1998; 04 (06) 705-709.
  • 68 Mansfeld R, Sauter-Louis C, Martin R. Auswirkungen der Länge der Trockenstehzeit bei Milchkühen auf Leistung, Gesundheit, Fruchtbarkeit und Kolostrumqualität. Tierarztl Prax Ausg G Grosstiere Nutztiere. 2012 04 239-250.
  • 69 Markus CR, Olivier B, de Haan E. Whey protein rich in alpha-lactalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects. Am J Clin Nutr 2002; 75 (06) 1051-1056.
  • 70 Marnila P, Korhonen H. Milk. Colostrum. In: Encyclopedia of Dairy Sciences. Amsterdam: Academic Press; 2011: 591-597.
  • 71 Mayer B, Doleschall M, Bender B, Bartyik J, Bosze Z, Frenyó LV, Kacskovics I. Expression of the neonatal Fc receptor (FcRn) in the bovine mammary gland. J Dairy Res 2005; 72 (S1): 107-112.
  • 72 Mayer B, Zolnai A, Frenyó LV, Jancsik V, Szentirmay Z, Hammarström L, Kacskovics I. Redistribution of the sheep neonatal Fc receptor in the mammary gland around the time of parturition in ewes and its localization in the small intestine of neonatal lambs. Immunology 2002; 107 (03) 288-296.
  • 73 McAloon CG, Whyte P, O’Grady L, Lorenz I, Green MJ, Hogan I, Johnson A, Doherty ML. Relationship between selected perinatal paratuberculosis management interventions and passive transfer of immunity in dairy calves. Vet Rec 2016; (179): 47-71.
  • 74 McGrath BA, Fox PF, McSweeney PLH, Kelly AL. Composition and properties of bovine colostrum. A review. Dairy Sci Technol 2016; 96 (02) 133-158.
  • 75 Moore M, Tyler JW, Chigerwe M, Dawes ME, Middleton JR. Effect of delayed colostrum collection on colostral IgG concentration in dairy cows. J Am Vet Med Assoc 2005; 226 (08) 1375-1377.
  • 76 Nardone A, Lacetera N, Bernabucci U, Ronchi B. Composition of colostrum from dairy heifers exposed to high air temperatures during late pregnancy and the early postpartum period. J Dairy Sci 1997; 80 (05) 838-844.
  • 77 Nonnecke BJ, Foote MR, Miller BL, Beitz DC, Horst RL. Short communication. Fat-soluble vitamin and mineral status of milk replacer-fed dairy calves: Effect of growth rate during the preruminant period. J Dairy Sci 2010; 93 (06) 2684-2690.
  • 78 Ohtsuka H, Terasawa S, Watanabe C, Kohiruimaki M, Mukai M, Ando T, Petrovski KR, Morris S. Effect of parity on lymphocytes in peripheral blood and colostrum of healthy Holstein dairy cows. Can J Vet Res 2009; 74 (02) 130-135.
  • 79 Ontsouka EC, Albrecht C, Bruckmaier RM. Invited review. Growth-promoting effects of colostrum in calves based on interaction with intestinal cell surface receptors and receptor-like transporters. J Dairy Sci 2016; 99 (06) 4111-4123.
  • 80 Ostensson K, Hageltorn M, Astrom G. Differential cell counting in fraction-collected milk from dairy cows. Acta Vet Scand 1988; 29 (3–4): 493-500.
  • 81 Parish SM, Tyler JW, Besser TE, Gay CC, Krytenberg D. Prediction of serum IgG1 concentration in Holstein calves using serum gamma glutamyltransferase activity. J Vet Intern Med 1997; 11 (06) 344-347.
  • 82 Park YH, Fox LK, Hamilton MJ, Davis WC. Bovine mononuclear leukocyte subpopulations in peripheral blood and mammary gland secretions during lactation. J Dairy Sci 1992; 75 (04) 998-1006.
  • 83 Pearson PB, Darnell AL, Weir J. The thiamine, riboflavin, nicotinic acid and pantothenic acid content of colostrum and milk of the cow and ewe. J Nutr 1946; 31: 51-57.
  • 84 Phipps AJ, Beggs DS, Murray AJ, Mansell PD, Pyman MF. Factors associated with colostrum immunoglobulin G concentration in northern-Victorian dairy cows. Aust Vet J 2017; 95 (07) 237-243.
  • 85 Pritchett LC, Gay CC, Besser TE, Hancock DD. Management and production factors influencing immunoglobulin G1 concentration in colostrum from Holstein cows. J Dairy Sci 1991; 74 (07) 2336-2341.
  • 86 Przybylska J, Albera E, Kankofer M. Antioxidants in bovine colostrum. Reprod Domest Anim 2007; 42 (04) 402-409.
  • 87 Quigley JD, Drewry JJ. Nutrient and immunity transfer from cow to calf preand postcalving. J Dairy Sci 1998; (10) 2779-2790.
  • 88 Rajaraman V, Nonnecke BJ, Horst RL. Effects of replacement of native fat in colostrum and milk with coconut oil on fat-soluble vitamins in serum and immune function in calves. J Dairy Sci 1997; 80 (10) 2380-2390.
  • 89 Reber AJ, Donovan DC, Gabbard J, Galland K, Aceves-Avila M, Holbert KA, Marshall L, Hurley DJ. Transfer of maternal colostral leukocytes promotes development of the neonatal immune system Part II. Effects on neonatal lymphocytes. Vet Immunol Immunopathol 2008; 123 (3–4): 305-313.
  • 90 Riedel-Caspari G. The influence of colostral leukocytes on the course of an experimental Escherichia coli infection and serum antibodies in neonatal calves. Vet Immunol Immunopathol 1993; 35 (3–4): 275-288.
  • 91 Roffler B, Fah A, Sauter SN, Hammon HM, Gallmann P, Brem G, Blum JW. Intestinal morphology, epithelial cell proliferation, and absorptive capacity in neonatal calves fed milk-born insulin-like growth factor-I or a colostrum extract. J Dairy Sci 2003; 86 (05) 1797-1806.
  • 92 Rojas R, Apodaca G. Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol 2002; 03 (12) 944-955.
  • 93 Sauerwein H, Häußler S. Endogenous and exogenous factors influencing the concentrations of adiponectin in body fluids and tissues in the bovine. Domest Anim Endocrinol 2016; 56: S33-S43.
  • 94 Sauter SN, Ontsouka E, Roffler B, Zbinden Y, Philipona C, Pfaffl M, Breier BH, Blum JW, Hammon HM. Effects of dexamethasone and colostrum intake on the somatotropic axis in neonatal calves. Am J Physiol Endocrinol Metab 2003; 285 (02) E252-E261.
  • 95 Sauter SN, Roffler B, Philipona C, Morel C, Romé V, Guilloteau P, Blum JW, Hammon HM. Intestinal development in neonatal calves. Effects of glucocorticoids and dependence of colostrum feeding. Biol Neonate 2004; 85 (02) 94-104.
  • 96 Scholz H, Knutzen G, Fischer B, Wähner M. Einflussfaktoren auf die Qualität der Kolostralmilch von Milchkühen. Züchtungskunde. 2011: 396-404.
  • 97 Shope RE, Gowen JW. Cholesterol and cholesterol ester content of bovine colostrum. J Exp Med 1928; 21-24.
  • 98 Simister NE, Mostov KE. An Fc receptor structurally related to MHC class I antigens. Nature 1989; 337 6203 184-187.
  • 99 Soberon F, van Amburgh ME. Lactation Biology Symposium. The effect of nutrient intake from milk or milk replacer of preweaned dairy calves on lactation milk yield as adults: a meta-analysis of current data. J Anim Sci 2013; 91 (02) 706-712.
  • 100 Staley TE, Corley LD, Bush LJ, Wynn EJones. The ultrastructure of neonatal calf intestine and absorption of heterologous proteins. Anat Rec 1972; 172 (03) 559-579.
  • 101 Stark A, Wellnitz O, Dechow C, Bruckmaier R, Baumrucker C. Colostrogenesis during an induced lactation in dairy cattle. J Anim Physiol Anim Nutr (Berl) 2015; 99 (02) 356-366.
  • 102 Steinhoff-Wagner J, Görs S, Junghans P, Bruckmaier RM, Kanitz E, Metges CC, Hammon HM. Intestinal glucose absorption but not endogenous glucose production differs between colostrumand formula-fed neonatal calves. J Nutr 2011; 141 (01) 48-55.
  • 103 Stelwagen K, Carpenter E, Haigh B, Hodgkinson A, Wheeler TT. Immune components of bovine colostrum and milk. J Anim Sci 2009; 87 (13 Suppl): 3-9.
  • 104 Taylor BC, Dellinger JD, Cullor JS, Stott JL. Bovine milk lymphocytes display the phenotype of memory T cells and are predominantly CD8+. Cell Immunol 1994; 156 (01) 245-253.
  • 105 Thompson JC, Pauli JV. Colostral transfer of gamma glutamyl transpeptidase in calves. New Zeal Vet J 1981; 29 (12) 223-226.
  • 106 Tivey, Le Dividich J, Herpin P, Brown D, Dauncey MJ. Differential effects of lipid and carbohydrate on enterocyte lactase activity in newborn piglets. Exp Physiol 1994; 79 (02) 189-201.
  • 107 Tsioulpas A, Grandison AS, Lewis MJ. Changes in physical properties of bovine milk from the colostrum period to early lactation. J Dairy Sci 2007; 90 (11) 5012-5017.
  • 108 Tuboly S, Bernath S, Glavits R, Medveczky I. Intestinal absorption of colostral lymphoid cells in newborn piglets. Vet Immunol Immunopathol 1988; 20 (01) 75-85.
  • 109 Viturro E, Meyer HH, Gissel C, Kaske M. Rapid method for cholesterol analysis in bovine milk and options for applications. J Dairy Res 2010; 77 (01) 85-89.
  • 110 Wang P, Drackley JK, Stamey-Lanier JA, Keisler D, Loor JJ. Effects of level of nutrient intake and age on mammalian target of rapamycin, insulin, and insulin-like growth factor-1 gene network expression in skeletal muscle of young Holstein calves. J Dairy Sci 2014; 97 (01) 383-391.
  • 111 Watson DL. Immunological functions of the mammary gland and its secretion –comparative review. Aust J Biol Sci 1980; 33 (04) 403-422.
  • 112 Watters RD, Guenther JN, Brickner AE, Rastani RR, Crump PM, Clark PW, Grummer RR. Effects of dry period length on milk production and health of dairy cattle. J Dairy Sci 2008; 91 (07) 2595-2603.
  • 113 Weaver DM, Tyler JW, VanMetre DC, Hostetler DE, Barrington GM. Passive transfer of colostral immunoglobulins in calves. J Vet Intern Med 2000; 14 (06) 569-577.
  • 114 Wilson LK, Tyler JW, Besser TE, Parish SM, Gant R. Prediction of serum IgG1 concentration in beef calves based on age and serum gamma-glutamyltransferase activity. J Vet Intern Med 1999; (13) 123-125.
  • 115 Xu L, Zhang L, Zhang Y, Sheng Q, Zhao A. Qualitative and quantitative comparison of hormone contents between bovine and human colostrums. International Dairy Journal 2011; 21 (01) 54-57.
  • 116 Zanker IA. Studies in calves fed colostrum AT 0–2, 6–7, 12–13 and 24–25 hours after birth. Dissertation, Universität Bern 1997
  • 117 Zanker IA, Hammon HM, Blum JW. Activities of gamma-glutamyltransferase, alkaline phosphatase and aspartate-aminotransferase in colostrum, milk and blood plasma of calves fed first colostrum at 0–2, 6–7, 12–13 and 24–25 after birth. J Vet Med A 2001; 48 (03) 179-185.