CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2021; 79(10): 912-923
DOI: 10.1590/0004-282X-ANP-2020-0429
View and Review

Adult-onset non-5q proximal spinal muscular atrophy: a comprehensive review

Atrofia muscular espinhal não-5q proximal de início no adulto: uma revisão abrangente
1   Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil.
,
1   Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil.
,
1   Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil.
,
1   Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil.
,
1   Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil.
,
1   Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil.
,
1   Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil.
,
1   Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, Setor de Investigações nas Doenças Neuromusculares, São Paulo SP, Brazil.
› Author Affiliations

Abstract

Background: Adult-onset spinal muscular atrophy (SMA) represents an expanding group of inherited neurodegenerative disorders in clinical practice. Objective: This review aims to synthesize the main clinical, genetic, radiological, biochemical, and neurophysiological aspects related to the classical and recently described forms of proximal SMA. Methods: The authors performed a non-systematic critical review summarizing adult-onset proximal SMA presentations. Results: Previously limited to cases of SMN1-related SMA type 4 (adult form), this group has now more than 15 different clinical conditions that have in common the symmetrical and progressive compromise of lower motor neurons starting in adulthood or elderly stage. New clinical and genetic subtypes of adult-onset proximal SMA have been recognized and are currently target of wide neuroradiological, pathological, and genetic studies. Conclusions: This new complex group of rare disorders typically present with lower motor neuron disease in association with other neurological or systemic signs of impairment, which are relatively specific and typical for each genetic subtype.

RESUMO

Antecedentes: Atrofia muscular espinhal (AME) de início no adulto representa um grupo de doenças neurodegenerativas hereditárias em expansão na prática clínica. Objetivo: Este artigo de revisão sintetiza os principais aspectos clínicos, genéticos, radiológicos, bioquímicos e neurofisiológicos relacionados às formas clássicas e recentemente descritas de AME proximal do adulto. Métodos: Os autores realizaram uma revisão crítica não sistemática descrevendo as principais apresentações de AME proximal de início no adulto. Resultados: Previamente restrito às apresentações de AME tipo 4 associada ao gene SMN1, este grupo atualmente envolve mais de 15 diferentes condições clínicas que compartilham entre si a presença de comprometimento progressivo e simétrico do neurônio motor inferior se iniciando no adulto ou no idoso. Novos subtipos clínicos e genéticos de AME proximal de início no adulto foram reconhecidas e são alvos atuais de estudos direcionados a aspectos neurorradiológicos, patológicos e genéticos. Conclusões: Este novo grupo complexo de doenças raras tipicamente se apresenta com doença do neurônio motor inferior em associação com outros sinais de comprometimento neurológico ou sistêmico, os quais apresentam padrões relativamente específicos para cada subtipo genético.

Authors’ contributions:

WBVRP: conception, organization, and execution of manuscript project, writing of the first draft, and review and critique of manuscript; PVSS, EAG: conception, organization, and execution of manuscript project, writing of the first draft of manuscript; BMLB, JMVAF, RILM: conception, and organization of manuscript project, writing of the first draft of manuscript; IBF, ASBO: conception of manuscript project, writing of the first draft, review and critique of manuscript.




Publication History

Received: 05 September 2020

Accepted: 24 December 2020

Article published online:
07 June 2023

© 2021. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Souza PVS, Pinto WBVR, Chieia MAT, Oliveira ASB. Clinical and genetic basis of familial amyotrophic lateral sclerosis. Arq Neuro-Psiquiatr. 2015 Dec;73(12):1026-37. https://doi.org/10.1590/0004-282X20150161
  • 2 Garg N, Park SB, Vucic S, Yiannikas C, Spies J, Howells J, et al. Differentiating lower motor neuron syndromes. J Neurol Neurosurg Psychiatry. 2017 Jun;88(6):474-83. https://doi.org/10.1136/jnnp-2016-313526
  • 3 Benarroch L, Bonne G, Rivier F, Hamroun D. The 2021 version of the gene table of neuromuscular disorders (nuclear genome). Neuromuscul Disord. 2020 Dec;30(12):1008-48. https://doi.org/10.1016/j.nmd.2020.11.009
  • 4 Pinto WBVR, Debona R, Nunes PP, Assis ACD, Lopes CG, Bortholin T, et al. Atypical Motor Neuron Disease variants: still a diagnostic challenge in Neurology. Rev Neurol (Paris). 2019 Apr;175(4):221-32. https://doi.org/10.1016/j.neurol.2018.04.016
  • 5 Arnold WD, Kassar D, Kissel JT. Spinal muscular atrophy: diagnosis and management in a new therapeutic era. Muscle Nerve. 2015 Feb;51(2):157-67. https://doi.org/10.1002/mus.24497
  • 6 Kolb SJ, Kissel JT. Spinal muscular atrophy. Neurol Clin. 2015 Nov;33(4):831-46. https://doi.org/10.1016/j.ncl.2015.07.004
  • 7 Turner MR, Barnwell J, Al-Chalabi A, Eisen A. Young-onset amyotrophic lateral sclerosis: historical and other observations. Brain. 2012 Sep;135(Pt 9):2883-91. https://doi.org/10.1093/brain/aws144
  • 8 Farrar MA, Kiernan MC. The genetics of Spinal Muscular Atrophy: progress and challenges. Neurotherapeutics. 2015 Apr;12(2):290-302. https://doi.org/10.1007/s13311-014-0314-x
  • 9 Zerres K, Rudnik-Schöneborn S. 93rd ENMC international workshop: non-5q spinal muscular atrophies (SMA) – clinical picture (6-8 April 2001, Naarden, The Netherlands). Neuromuscul Disord. 2003 Feb;13(2):179-83. https://doi.org/10.1016/s0960-8966(02)00211-0
  • 10 Wee CD, Kong L, Sumner CJ. The genetics of spinal muscular atrophies. Curr Opin Neurol. 2010 Oct;23(5):450-8. https://doi.org/10.1097/WCO.0b013e32833e1765
  • 11 Peeters K, Chamova T, Jordanova A. Clinical and genetic diversity of SMN1-negative proximal spinal muscular atrophies. Brain. 2014 Nov;137(11):2879-96. https://doi.org/10.1093/brain/awu169
  • 12 Souza PVS, Bortholin T, Naylor FGM, Chieia MAT, Pinto WBVR, Oliveira ASB. Motor neuron disease in inherited neurometabolic disorders. Rev Neurol (Paris). 2018 Mar;174(3):115-24. https://doi.org/10.1016/j.neurol.2017.06.020
  • 13 Karakaya M, Storbeck M, Strathmann EA, Vedove AD, Hölker I, Altmueller J, et al. Targeted sequencing with expanded gene profile enables high diagnostic yield in non-5q-spinal muscular atrophies. Hum Mutat. 2018 Sep;39(9):1284-98. https://doi.org/10.1002/humu.23560
  • 14 Darras BT. Non-5q spinal muscular atrophies: the alphanumeric soup thickens. Neurology. 2011 Jul;77(4):312-4. https://doi.org/10.1212/WNL.0b013e3182267bd8
  • 15 Kennedy WR, Alter M, Sung JH. Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex-linked recessive trait. Neurology. 1968 Jul;18(7):671-80. https://doi.org/10.1212/wnl.18.7.671
  • 16 Grunseich C, Fischbeck KH. Spinal and bulbar muscular atrophy. Neurol Clin. 2015 Nov;33(4):847-54. https://doi.org/10.1016/j.ncl.2015.07.002
  • 17 Manzano R, Sorarú G, Grunseich C, Fratta P, Zuccaro E, Pennuto M, et al. Beyond motor neurons: expanding the clinical spectrum in Kennedy’s disease. J Neurol Neurosurg Psychiatry. 2018 Aug;89(8):808-12. https://doi.org/10.1136/jnnp-2017-316961
  • 18 Querin G, Soraru G, Pradat PF. Kennedy disease (X-linked recessive bulbospinal neuronopathy): a comprehensive review from pathophysiology to therapy. Rev Neurol (Paris). 2017 May;173(5):326-37. https://doi.org/10.1016/j.neurol.2017.03.019
  • 19 Breza M, Koutsis G. Kennedy’s disease (spinal and bulbar muscular atrophy): a clinically oriented review of a rare disease. J Neurol. 2019 Mar;266(3):565-73. https://doi.org/10.1007/s00415-018-8968-7
  • 20 Pradat PF, Bernard E, Corcia P, Couratier P, Jublanc C, Querin G, et al. The French national protocol for Kennedy’s disease (SBMA): consensus diagnostic and management recommendations. Orphanet J Rare Dis. 2020 Apr 10;15(1):90. https://doi.org/10.1186/s13023-020-01366-z
  • 21 Dahlqvist JR, Oestergaard ST, Poulsen NS, Thomsen C, Vissing J. Refining the spinobulbar muscular atrophy phenotype by quantitative MRI and clinical assessments. Neurology. 2019 Feb;92(6):e548-e559. https://doi.org/10.1212/WNL.20200429202004296887
  • 22 Klickovic U, Zampedri L, Sinclair CDJ, Wastling SJ, Trimmel K, Howard RS, et al. Skeletal muscle MRI differentiates SBMA and ALS and correlates with disease severity. Neurology. 2019 Aug;93(9):e895-e907. https://doi.org/10.1212/WNL.20200429202004298009
  • 23 Lombardi V, Bombaci A, Zampedri L, Lu CH, Malik B, Zetterberg H, et al. Plasma pNfH levels differentiate SBMA from ALS. J Neurol Neurosurg Psychiatry. 2020 Feb;91(2):215-7. https://doi.org/10.1136/jnnp-2019-320624
  • 24 Hashizume A, Katsuno M, Suzuki K, Banno H, Takeuchi Y, Kawashima M, et al. Efficacy and safety of leuprorelin acetate for subjects with spinal and bulbar muscular atrophy: pooled analyses of two randomized-controlled trials. J Neurol. 2019 May;266(5):1211-21. https://doi.org/10.1007/s00415-019-09251-x
  • 25 Fernández-Rhodes LE, Kokkinis AD, White MJ, Watts CA, Auh S, Jeffries NO, et al. A randomised, placebo-controlled trial of dutasteride in spinal and bulbar muscular atrophy. Lancet Neurol. 2011 Feb;10(2):140-7. https://doi.org/10.1016/S1474-4422(10)70321-5
  • 26 Grunseich C, Miller R, Swan T, Glass DJ, El Mouelhi M, Fornaro M, et al. Safety, tolerability, and preliminary efficacy of an IGF-1 mimetic in patients with spinal and bulbar muscular atrophy: a randomized, placebo-controlled trial. Lancet Neurol. 2018 Dec;17(12):1043-52. https://doi.org/10.1016/S1474-4422(18)30320-X
  • 27 Ikezoe K, Yoshimura T, Taniwaki T, Matsuura E, Furuya H, Yamada T, et al. Autosomal dominant familial spinal and bulbar muscular atrophy with gynecomastia. Neurology. 1999 Dec;53(9):2187-9. https://doi.org/10.1212/wnl.53.9.2187
  • 28 Finkel N. A forma pseudomiopàtica tardia da atrofia muscular progressiva heredo-familial. Arq Neuro-Psiquiatr. 1962 Dec;20(4):307-22. https://doi.org/10.1590/S0004-282X1962000400005
  • 29 Richieri-Costa A, Rogatko A, Levisky R, Finkel N, Frota-Pessoa O. Autosomal dominant late adult spinal muscular atrophy, type Finkel. Am J Med Genet. 1981;9(2):119-28. https://doi.org/10.1002/ajmg.1320090206
  • 30 Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A, Middleton S, Cascio D, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet. 2004 Nov;75(5):822-31. https://doi.org/10.1086/425287
  • 31 Marques VD, Marques W Jr. Neurophysiological findings of the late-onset, dominant, proximal spinal muscular atrophies with dysautonomia because of the VAPB Pro56Ser mutation. J Clin Neurophysiol. 2008 Aug;25(4):233-5. https://doi.org/10.1097/WNP.0b013e31817ed219
  • 32 Kosac V, Freitas MR, Prado FM, Nascimento O, Bittar C. Familial adult spinal muscular atrophy associated with the VAPB gene: report of 42 cases in Brazil. Arq Neuro-Psiquiatr. 2013 Oct;71(10):788-90. https://doi.org/10.1590/0004-282X20130123
  • 33 Jokela M, Penttilä S, Huovinen S, Hackman P, Saukkonen AM, Toivanen J, et al. Late-onset lower motor neuronopathy: a new autosomal dominant disorder. Neurology. 2011 Jul;77(4):334-40. https://doi.org/10.1212/WNL.0b013e3182267b71
  • 34 Penttilä S, Jokela M, Huovinen S, Saukkonen AM, Toivanen J, Lindberg C, et al. Late-onset spinal motor neuronopathy – a common form of dominant SMA. Neuromuscul Disord. 2014 Mar;24(3):259-68. https://doi.org/10.1016/j.nmd.2013.11.010
  • 35 Müller K, Andersen PM, Hübers A, Marroquin N, Volk AE, Danzer KM, et al. Two novel mutations in conserved codons indicate that CHCHD10 is a gene associated with motor neuron disease. Brain. 2014 Dec;137(Pt 12):e309. https://doi.org/10.1093/brain/awu227
  • 36 Bannwarth S, Ait-El-Mkadern S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K, et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain. 2014 Aug;137(Pt 8):2329-45. https://doi.org/10.1093/brain/awu138
  • 37 Penttilä S, Jokela M, Bouquin H, Saukkonen AM, Toivanen J, Udd B. Late onset spinal motor neuronopathy is caused by mutation in CHCHD10. Ann Neurol. 2015 Jan;77(1):163-72. https://doi.org/10.1002/ana.24319
  • 38 Pasanen P, Myllykangas L, Poyhonen M, Kiuru-Enari S, Tienari PJ, Laaksovirta H, et al. Intrafamilial clinical variability in individuals carrying the CHCHD10 mutation Gly66Val. Acta Neurol Scand. 2016 May;133(5):361-6. https://doi.org/10.1111/ane.12470
  • 39 Penttilä S, Jokela M, Saukkonen AM, Toivanen J, Palmio J, Lähdesmäki J, et al. CHCHD10 mutations and motor neuron disease: the distribution in Finnish patients. J Neurol Neurosurg Psychiatry. 2017 Mar;88(3):272-7. https://doi.org/10.1136/jnnp-2016-314154
  • 40 Brockmann SJ, Freischmidt A, Oeckl P, Müller K, Ponna SK, Helferich AM, et al. CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease by haploinsufficiency. Hum Mol Genet. 2018 Feb;27(4):706-15. https://doi.org/10.1093/hmg/ddx436
  • 41 Isozumi K, DeLong R, Kaplan J, Deng HX, Iqbal Z, Hung WY, et al. Linkage of scapuloperoneal spinal muscular atrophy to chromosome 12q24.1-q24.31. Hum Mol Genet. 1996 Sep;5(9):1377-82. https://doi.org/10.1093/hmg/5.9.1377
  • 42 Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, et al. Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet. 2010 Feb;42(2):165-9. https://doi.org/10.1038/ng.509
  • 43 Takashima H, Nakagawa M, Nakahara K, Suehara M, Matsuzaki T, Higuchi I, et al. A new type of hereditary motor and sensory neuropathy linked to chromosome 3. Ann Neurol. 1997 Jun;41(6):771-80. https://doi.org/10.1002/ana.410410613
  • 44 Maeda K, Sugiura M, Kato H, Sanada M, Kawai H, Yasuda H. Hereditary motor and sensory neuropathy (proximal dominant form, HMSN-P) among Brazilians of Japanese ancestry. Clin Neurol Neurosurg. 2007 Nov;109(9):830-2. https://doi.org/10.1016/j.clineuro.2007.07.015
  • 45 Patroclo CB, Lino AMM, Marchiori PE, Brotto MWI, Hirata MTA. Autosomal dominant HMSN with proximal involvement: new Brazilian cases. Arq Neuro-Psiquiatr. 2009 Sep;67(3B):892-6. https://doi.org/10.1590/S0004-282X2009000500021
  • 46 Campellone JV. Hereditary motor and sensory neuropathy with proximal predominance (HMSN-P). J Clin Neuromuscul Dis. 2013 Jun;14(4):180-3. https://doi.org/10.1097/CND.0b013e318286165a
  • 47 Stephen CD, Balkwill D, James P, Haxton E, Sassower K, Schmahmann JD, et al. Quantitative oculomotor and nonmotor assessments in late-onset GM2 gangliosidosis. Neurology. 2020 Feb;94(7):e705-e717. https://doi.org/10.1212/WNL.20200429202004298959
  • 48 Kang SY, Song SK, Lee JS, Choi JC, Kang JH. Adult Sandhoff disease with 2 mutations in the HEXB gene presenting as brachial amyotrophic diplegia. J Clin Neuromuscul Dis. 2013 Dec;15(2):47-51. https://doi.org/10.1097/CND.20200429202004290014
  • 49 Chardon JW, Bourque PR, Geraghty MT, Boycott KM. Very late-onset Sandhoff disease presenting as Kennedy disease. Muscle Nerve. 2015 Dec;52(6):1135-6. https://doi.org/10.1002/mus.24775
  • 50 Cachon-Gonzalez MB, Zaccariotto E, Cox TM. Genetics and therapies for GM2 gangliosidosis. Curr Gene Ther. 2018;18(2):68-89. https://doi.org/10.2174/1566523218666180404162622
  • 51 Scarpelli M, Tomelleri G, Bertolasi L, Salviati A. Natural history of motor neuron disease in adult onset GM2-gangliosidosis: a case report with 25 years of follow-up. Mol Genet Metab Rep. 2014 Jul;1:269-72. https://doi.org/10.1016/j.ymgmr.2014.06.002
  • 52 Iwahara N, Hisahara S, Hayashi T, Kawamata J, Shimohama S. A novel lamin A/C gene mutation causing spinal muscular atrophy phenotype with cardiac involvement: report of one case. BMC Neurol. 2015 Feb;15:13. https://doi.org/10.1186/s12883-015-0269-5
  • 53 Rudnik-Schöneborn S, Botzenhart E, Eggermann T, Senderek J, Schoser BG, Schröder R, et al. Mutations of the LMNA gene can mimic autosomal dominant proximal spinal muscular atrophy. Neurogenetics. 2007 Apr;8(2):137-42. https://doi.org/10.1007/s10048-006-0070-0
  • 54 Chen YZ, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J, et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet. 2004 Jun;74(6):1128-35. https://doi.org/10.1086/421054
  • 55 Rudnik-Schöneborn S, Arning L, Epplen JT, Zerres K. SETX gene mutation in a family diagnosed autosomal dominant proximal spinal muscular atrophy. Neuromuscul Disord. 2012 Mar;22(3):258-62. https://doi.org/10.1016/j.nmd.2011.09.006
  • 56 Scoto M, Rossor AM, Harms MB, Cirak S, Calissano M, Robb S, et al. Novel mutations expand the clinical spectrum of DYNC1H1-associated spinal muscular atrophy. Neurology. 2015 Feb;84(7):668-79. https://doi.org/10.1212/WNL.20200429202004291269
  • 57 Niu Q, Wang X, Shi M, Jin Q. A novel DYNC1H1 mutation causing spinal muscular atrophy with lower extremity predominance. Neurol Genet. 2015 Aug;1(2):e20. https://doi.org/10.1212/NXG.20200429202004290017
  • 58 Rossor AM, Oates EC, Salter HK, Liu Y, Murphy SM, Schule R, et al. Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2. Brain. 2015 Feb;138(Pt 2):293-310. https://doi.org/10.1093/brain/awu356
  • 59 Beecroft SJ, McLean CA, Delatycki MB, Koshy K, Yiu E, Haliloglu G, et al. Expanding the phenotypic spectrum associated with mutations of DYNC1H1. Neuromuscul Disord. 2017 Jul;27(7):607-15. https://doi.org/10.1016/j.nmd.2017.04.011
  • 60 Bosch AM, Stroek K, Abeling NG, Waterham HR, Ijlst L, Wanders RJ. The Brown-Vialetto-Van Laere and Fazio Londe syndrome revisited: natural history, genetics, treatment and future perspectives. Orphanet J Rare Dis. 2012 Oct 29;7:83. https://doi.org/10.1186/1750-1172-7-83
  • 61 Jaeger B, Bosch AM. Clinical presentation and outcome of riboflavin transporter deficiency: mini review after five years of experience. J Inherit Metab Dis. 2016 Jul;39(4):559-64. https://doi.org/10.1007/s10545-016-9924-2
  • 62 Bashford JA, Chowdhury FA, Shaw CE. Remarkable motor recovery after riboflavin therapy in adult-onset Brown-Vialetto-Van Laere syndrome. Pract Neurol. 2017 Jan;17(1):53-6. https://doi.org/10.1136/practneurol-2016-001488
  • 63 Camargos S, Guerreiro R, Bras J, Mageste LS. Late-onset and acute presentation of Brown-Vialetto-Van Laere syndrome in a Brazilian family. Neurol Genet. 2018 Feb;4(1):e215. https://doi.org/10.1212/NXG.20200429202004290215
  • 64 Di Fonzo A, Ronchi D, Gallia F, Cribiù FM, Trezzi I, Vetro A, et al. Lower motor neuron disease with respiratory failure caused by a novel MAPT mutation. Neurology. 2014 Jun;82(22):1990-8. https://doi.org/10.1212/WNL.20200429202004290476
  • 65 Origone P, Geroldi A, Lamp M, Sanguineri F, Caponnetto C, Cabona C, et al. Role of MAPT in pure motor neuron disease: report of a recurrent mutation in Italian patients. Neurodegener Dis. 2018;18(5-6):310-14. https://doi.org/10.1159/000497820
  • 66 Yu FPS, Amintas S, Levade T, Medin JA. Acid ceramidase deficiency: Farber disease and SMA-PME. Orphanet J Rare Dis. 2018 Jul;13(1):121. https://doi.org/10.1186/s13023-018-0845-z
  • 67 Messina MF, Messina S, Gaeta M, Rodolico C, Damiano AMS, Lombardo F, et al. Infantile spinal muscular atrophy with respiratory distress type I (SMARD 1): an atypical phenotype and review of the literature. Eur J Paediatr Neurol. 2012 Jan;16(1):90-4. https://doi.org/10.1016/j.ejpn.2011.10.005
  • 68 Pedurupillay CRJ, Amundsen SS, Baroy T, Rasmussen M, Blomhoff A, Stadheim BF, et al. Clinical and molecular characteristics in three families with biallelic mutations in IGHMBP2. Neuromuscul Disord. 2016 Sep;26(9):570-5. https://doi.org/10.1016/j.nmd.2016.06.457