Subscribe to RSS

DOI: 10.1590/0004-282X-ANP-2020-0503
Effect of cognitive behavioral intervention on electroencephalographic band powers of children with learning difficulty under eyes-closed and eyes-open conditions
Efecto de la intervención cognitivo-conductual sobre los poderes de las bandas electroencefalográficas de niños con dificultades de aprendizaje durante condiciones de ojos cerrados y abiertos
ABSTRACT
Background: Electroencephalography (EEG) plays an important role in assessing children with learning difficulties or related behavioral issues. Understanding EEG alterations in students with learning difficulties is crucial for evaluating cognitive functioning. Objective: The first aim was to examine the effects of the Program for Enhancing Academic and Behavioral Learning Skills (PEABLS), a cognitive-behavioral intervention on absolute and relative EEG band powers under eyes-closed and eyes-open conditions. Another aim was to examine the relationship between relative band powers of EEG waveforms through specific cognitive measurements like IQ, working memory and BGT for perceptual motor skills and organization. Methods: This study had a quasi-experimental pre-test post-test research design and involved a group of 50 students with learning problems. PEABLS, an accessible school-based intervention, was offered to academically low-performing students. EEG recordings were conducted before and after the intervention on prefrontal (FP1 FP2), temporal (T3 T4) and occipital (O1 O2) scalp locations. The data acquired were processed using MATLAB to find the absolute and relative band powers of waveforms. Results: Paired t tests on the recorded EEG data suggested that significant improvements in absolute and relative power values of waveforms were achieved, post-intervention. There were significant increases in relative alpha power values in the prefrontal and temporal regions under both eyes-closed and eyes-open conditions and significant increases in relative theta and delta power in the prefrontal and temporal regions. Pearson's correlation suggested that there was a significant relationship between relative alpha and beta power values in the prefrontal and occipital regions, through the cognitive measurements.
Conclusion: PEABLS was significative in bringing changes to EEG band powers.
RESUMEN
Antecedentes: comprender las alteraciones del electroencefalograma en estudiantes con dificultades de aprendizaje es fundamental para evaluar el funcionamiento cognitivo. Objetivo: El primer objetivo fue examinar los efectos del Programa para mejorar las habilidades de aprendizaje académico y conductual (PEABLS), una intervención cognitivo-conductual sobre los poderes absolutos y relativos de la banda de EEG en condiciones de ojos cerrados y abiertos. Otro objetivo fue examinar la relación entre los poderes de banda relativos de las formas de onda del EEG a través de medidas cognitivas específicas como el coeficiente intelectual, la memoria de trabajo y BGT para las habilidades motoras perceptivas y la organización. Métodos: Este estudio tuvo un diseño de investigación cuasi-experimental pre-test post-test e involucró a un grupo de 50 estudiantes con problemas de aprendizaje. PEABLS, una intervención accesible basada en la escuela, se ofreció a estudiantes de bajo rendimiento académico. Los registros de EEG se realizaron antes y después de la intervención en las localizaciones del cuero cabelludo prefrontal (FP1 FP2), temporal (T3 T4) y occipital (O1 O2). Los datos adquiridos se procesaron utilizando MATLAB para encontrar las potencias de banda absolutas y relativas de las formas de onda. Resultados: las pruebas t pareadas en los datos de EEG registrados sugirieron que se lograron mejoras significativas en los valores de potencia absoluta y relativa de las formas de onda, después de la intervención. Hubo aumentos significativos en los valores de potencia alfa relativa en las regiones prefrontal y temporal y en la potencia relativa theta y delta en las regiones prefrontal y temporal. La correlación de Pearson sugirió que había una relación significativa entre los valores de potencia relativa alfa y beta a través de las mediciones cognitivas. Conclusión: PEABLS fue significativo al traer cambios a los poderes de la banda de EEG.
Keywords:
Electroencephalography - Learning - Cognitive Behavioral Therapy - Cognition - Resonance Frequency AnalysisPalabras clave:
Electroencefalografía - Aprendizaje - Terapia Cognitivo-Conductual - Cognición - Análisis de Frecuencia de ResonanciaAuthors’ contributions:
PK (lead): conceptualization, data curation, formal analysis, writing-original draft; SPKJ (supporting): conceptualization, writing-original draft, lead supervision. Both authors: writing-review & editing, project administration.
Support
This study formed part of a postdoctoral fellowship that received funding from the Indian Council of Social Science Research, New Delhi (ICSSR file no. 3-80/17-18/PDF/GEN).
Publication History
Received: 29 October 2020
Accepted: 14 June 2021
Article published online:
30 January 2023
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Fletcher JM. Dyslexia: the evolution of a scientific concept. J Int Neuropsychol Soc 2009; 15 (05) 501-508 https://doi.org/10.1017/S1355617709090900
- 2 Brock C, Schwartzman S. Os desafios da educação no Brasil. Rio de Janeiro (RJ): Editora Nova Fronteira; 2005. 306.
- 3 Shonkoff JP, Boyce WT, McEwen BS. Neuroscience, molecular biology, and the childhood roots of health disparities. JAMA 2009; 301 (21) 2252-2259 https://doi.org/10.1001/jama.2009.754
- 4 DePrince AP, Weinzierl KM, Combs MD. Executive function performance and trauma exposure in a community sample of children. Child Abuse Negl 2009; 33 (06) 353-361 https://doi.org/10.1016/j.chiabu.2008.08.002
- 5 Kaushik P. Childhood adversities and learning difficulty in school children: role of resilience and self-regulation. Int J Soc Sci 2019; 7 (03) 498-503
- 6 Siqueira CM, GurGe-Giannetti J. Poor school performance: an updated review. Rev Assoc Med Bras (1992) 2011; 57 (01) 78-87 https://doi.org/10.1590/S0104-42302011000100021
- 7 Santosh AK. Scholastic backwardness in children attending normal school. Andhra Pradesh J Psychol Med 2014; 15 (02) 251-254
- 8 Karande S, Kulkarni M. Specific learning disability: the invisible handicap. Indian Paediatr 2005; 42 (04) 315-319
- 9 Ahn H, Prichep L, John ER, Baird H, Trepetin M, Kaye H. Developmental equations reflect brain dysfunctions. Science 1980; 210 4475 1259-1262 https://doi.org/10.1126/science.7434027
- 10 John ER, Prichep L, Ahn H, Easton P, Fridman J, Kaye H. Neurometric evaluation of cognitive dysfunctions and neurological disorders in children. Prog Neurobiol 1983; 21 (04) 239-290 https://doi.org/10.1016/0301-0082(83)90014-x
- 11 Díaz de León AE, Harmony T, Marosi E, Becker J, Alvarez A. Effect of diff e re n t factors on EEG spectral parameters. Int J Neurosci 1988; 43 1-2 123-131 https://doi.org/10.3109/00207458808985789
- 12 Harmony T, Hinojosa G, Marosi E, Becker J, Rodriguez M, Reyes A. et al. Correlation between EEG spectral parameters and an educational evaluation. Int J Neurosci 1990; 54 1-2 145-155 https://doi.org/10.3109/00207459008986630
- 13 Byring RF, Salmi TK, Sainio KO, Örn HP. EEG in children with spelling disabilities. Electroencephalogr Clin Neurophysiol 1991; 79 (04) 247-255 https://doi.org/10.1016/0013-4694(91)90119-O
- 14 Harmony T, Marosi E, Becker J, Rodríguez M, Reyes A, Fernández T. et al. Longitudinal quantitative EEG study of children with different performances on a reading- writing test. Electroencephalogr Clin Neurophysiol 1995; 95 (06) 426-433 https://doi.org/10.1016/0013-4694(95)00135-2
- 15 Gasser T, Rousson V, Gasser US. EEG power and coherence in children with educational problems. J Clin Neurophysiol 2003; 20 (04) 273-282 https://doi.org/10.1097/00004691-200307000-00007
- 16 Bresnahan SM, Anderson JW, Barry RJ. Age-related changes in quantitative EEG in attention-deficit/hyperactivity disorder. Biol Psychiatry 1999; 46 (12) 1690-1697 https://doi.org/10.1016/s0006-3223(99)00042-6
- 17 Lazzaro I, Gordon E, Li W, Lim CL, Plahn M, Whitmont S. et al. Simultaneous EEG and EDA measures in adolescent attention deficit hyperactivity disorder. Int J Psychophysiol 1999; 34 (02) 123-134 https://doi.org/10.1016/S0167-8760(99)00068-9
- 18 Monastra VJ, Lubar JF, Linden M. The development of a quantitative electroencephalographic scanning process for attention deficit-hyperactivity disorder: reliability and validity studies. Neuropsychology 2001; 15 (01) 136-144 https://doi.org/10.1037/0894-4105.15.1.136
- 19 Hermens DF, Kohn MR, Clarke SD, Gordon E, Williams LM. Sex differences in adolescent ADHD: findings from concurrent EEG and EDA. Clin Neurophysiol 2005; 116 (06) 1455-1463 https://doi.org/10.1016/j.clinph.2005.02.012
- 20 Loo SK, Barkley RA. Clinical utility of EEG in attention deficit hyperactivity disorder. Appl Neuropsychol 2005; 12 (02) 64-76 https://doi.org/10.1207/s15324826an1202_2
- 21 Schmid RG, Tirsch WS, Scherb H. Correlation between spectral EEG parameters and intelligence test variables in school-age children. Clin Neurophysiol 2002; 113 (10) 1647-1656 https://doi.org/10.1016/S1388-2457(02)00212-2
- 22 Fonseca LC, Tedrus GMAS, Chiodi MG, Cerqueira JN, Tonelotto JMF. Quantitative EEG in children with learning disabilities: analysis of band power. Arq Neuropsiquiatr 2006; 64 (2B) 376-381 https://doi.org/10.1590/S0004-282X2006000300005
- 23 Fernández T, Silva-Pereyra J, Prieto-Corona B, Rodríguez-Camacho M, Reynoso-Alcántara V. Event-related brain potentials during a semantic priming task in children with learning disabilities not otherwise specified. PLoS One 2014; 9 (08) e105318 https://doi.org/10.1371/journal.pone.0105318
- 24 Ackerman PT, Dykman RA, Oglesby DM, Newton JE. EEG power spectra of children with dyslexia, slow learners, and normally reading children with ADD during verbal processing. J Learn Disabil 1994; 27 (10) 619-630 https://doi.org/10.1177/002221949402701002
- 25 Shereena EA, Gupta RK, Bennett CN, Sagar KJV, Rajeswaran J. EEG neurofeedback training in children with attention deficit/hyperactivity disorder: a cognitive and behavioral outcome study. Clin EEG Neurosci 2019; 50 (04) 242-255 https://doi.org/10.1177/1550059418813034
- 26 Kaushik P, Jena SPK. Self-Regulation learning strategies and academic performance in students with learning difficulty. Int J Behav Sci 2021; 14 (04) 172-177 https://doi.org/10.30491/IJBS.2020.212964.1180
- 27 Swarup S, Mehta DH, Diagnostic test of learning disability (DTLD). Centre for Special Education, SNDT Women University. Uppal S. Sixth survey of educational research, volume I. New Delhi (IN): NCERT; 1993: 197-211
- 28 Raven JC. Guide to progressive matrices (1938). London (UK): H. K. Lewis & Co. Ltd; 1993
- 29 Malin A. Malin's intelligence scale for Indian children. Indian J Mental Retardation 1971; 4: 15-25
- 30 Koppitz EM. The bender-gestalt test for young children. New York (NY): Grune & Stratton, Inc.; 1964
- 31 Singh M. Introduction to biomedical instrumentation. 4. PHI Publisher, Ltd.; 2014
- 32 Singh M, Sharma A. Correlational study of attention task performance and EEG alpha power. IJITM 2015; 8 (02) 188-196 https://doi.org/10.141079/IJITKM.2015.807
- 33 Marosi E, Harmony T, Becker J, Reyes A, Bernal J, Fernández T. et al. Electroencephalographic coherences discriminate between children with different pedagogical evaluation. Int J Psychophysiol 1995; 19 (01) 23-32 https://doi.org/10.1016/0167-8760(94)00059-N
- 34 Jäncke L, Alahmadi N. Resting state EEG in children with learning disabilities: an independent component analysis approach. Clin EEG Neurosci 2016; 47 (01) 24-36 https://doi.org/10.1177/1550059415612622
- 35 Arns M, Peters S, Breteler R, Verhoeven L. Different brain activation patterns in dyslexic children: evidence from EEG power and coherence patterns for the double-deficit theory of dyslexia. J Integr Neurosci 2007; 6 (01) 175-190 https://doi.org/10.1142/S0219635207001374
- 36 Simos PG, Fletcher JM, Bergman E, Breier JI, Foorman BR, Castillo EM. et al. Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology 2002; 58 (08) 1203-1213 https://doi.org/10.1212/wnl.58.8.1203
- 37 Mann CA, Lubar JF, Zimmerman AW, Miller CA, Muenchen RA. Quantitative analysis of EEG in boys with attention-deficit-hyperactivity disorder: controlled study with clinical implications. Pediatr Neurol 1992; 8 (01) 30-36 https://doi.org/10.1016/0887-8994(92)90049-5
- 38 Monastra VJ, Lynn S, Linden M, Lubar JF, Gruzelier J, LaVaque TJ. Electroencephalographic biofeedback in the treatment of attention-deficit/hyperactivity disorder. Appl Psychophysiol Biofeedback 2005; 30 (02) 95-114 https://doi.org/10.1007/s10484-005-4305-x
- 39 Arns M, Drinkenburg W, Kenemans JL. The effects of QEEG-informed neurofeedback in ADHD: an open-label pilot study. Appl Psychophysiol Biofeedback 2012; 37 (03) 171-180 https://doi.org/10.1007/s10484-012-9191-4
- 40 Harmony T, Psychophysiological evaluation of neuropsychological disorders in children. Reynolds CR, Fletcher-Janzen E. Handbook of clinical child neuropsychology. Springer Science Business Media; 2008: 383-399
- 41 Cramer D, Howitt DL. The SAGE dictionary of statistics: a practical resource for students in social sciences. 1. London (UK): SAGE Publications Ltd; 2004. 208.
- 42 Doane DP, Seward LE. Measuring skewness: a forgotten statistic?. J Stat Educ 2011; 19 (02) 1-18
- 43 Kaushik P, Jena SPK. Academic, self-regulation and resilience skills improvement with PEABLS intervention in students with learning difficulty. Perspect Soc Work 2019; 34 (03) 33-57
- 44 Fonseca LC, Tedrus GMAS, Martins SMV, Gibert MAP, Antunes TA, Laloni DT. Eletrencefalograma quantitativoem escolares sadios: análise de frequências. Arq Neuropsiquiatr 2003; 61 (3B) 796-801 https://doi.org/10.1590/S0004-282X2003000500018
- 45 Kirk L. Neurofeedback protocols for subtypes of attention deficit hyperactivity disorder. In: Evans JR, editors. Handbook of neurofeedback dynamics and clinical applications. New York (NY): Haworth Medical Press; 2007: 267-299