Subscribe to RSS

DOI: 10.1590/0004-282X-ANP-2021-0052
Gut microbiome in neuropsychiatric disorders
O microbioma intestinal nas doenças neuropsiquiátricas
ABSTRACT
Background: Neuropsychiatric disorders are a significant cause of death and disability worldwide. The mechanisms underlying these disorders include a constellation of structural, infectious, immunological, metabolic, and genetic etiologies. Advances in next-generation sequencing techniques have demonstrated that the composition of the enteric microbiome is dynamic and plays a pivotal role in host homeostasis and several diseases. The enteric microbiome acts as a key mediator in neuronal signaling via metabolic, neuroimmune, and neuroendocrine pathways. Objective: In this review, we aim to present and discuss the most current knowledge regarding the putative influence of the gut microbiome in neuropsychiatric disorders. Methods: We examined some of the preclinical and clinical evidence and therapeutic strategies associated with the manipulation of the gut microbiome. Results: targeted taxa were described and grouped from major studies to each disease. Conclusions: Understanding the complexity of these ecological interactions and their association with susceptibility and progression of acute and chronic disorders could lead to novel diagnostic biomarkers based on molecular targets. Moreover, research on the microbiome can also improve some emerging treatment choices, such as fecal transplantation, personalized probiotics, and dietary interventions, which could be used to reduce the impact of specific neuropsychiatric disorders. We expect that this knowledge will help physicians caring for patients with neuropsychiatric disorders.
RESUMO
Antecedentes: Os transtornos neuropsiquiátricos são uma importante causa de morte e invalidez no mundo. Os mecanismos subjacentes a esses transtornos incluem uma constelação de etiologias estruturais, infecciosas, imunológicas, metabólicas e genéticas. Avanços nas técnicas de sequenciamento do DNA têm demonstrado que a composição do microbioma entérico é dinâmica e desempenha um papel fundamental não apenas na homeostase do hospedeiro, mas também em várias doenças. O microbioma entérico atua como mediador na sinalização das vias metabólica, neuroimune e neuroendócrina. Objetivo: Apresentar os estudos mais recentes sobre a possível influência do microbioma intestinal nas diversas doenças neuropsiquiátricas e discutir tanto os resultados quanto a eficácia dos tratamentos que envolvem a manipulação do microbioma intestinal. Métodos: foram examinadas algumas das evidências pré-clínicas e clínicas e estratégias terapêuticas associadas à manipulação do microbioma intestinal. Resultados: os táxons-alvo foram descritos e agrupados a partir dos principais estudos para cada doença. Conclusões: Entender a fundo a complexidade das interações ecológicas no intestino e sua associação com a suscetibilidade a certas doenças agudas e crônicas pode levar ao desenvolvimento de novos biomarcadores diagnósticos com base em alvos moleculares. Além disso, o estudo do microbioma intestinal pode auxiliar na otimização de tratamentos não farmacológicos emergentes, tais como o transplante de microbiota fecal, o uso de probióticos e intervenções nutricionais personalizadas. Dessa forma, terapias alternativas poderiam ser usadas para reduzir o impacto dos transtornos neuropsiquiátricos na saúde pública. Esperamos que esse conhecimento seja útil para médicos que cuidam de pacientes com diversos transtornos neuropsiquiátricos.
Keywords:
Gastrointestinal Microbiome - Metagenomics - Nervous System Diseases - Transplantation - Precision MedicinePalavras-chave:
Microbioma Gastrointestinal - Metagenômica - Doenças do Sistema Nervoso - Transplante - Medicina de PrecisãoAuthors’ contributions:
All the authors contributed equally to the development, elaboration, and writing of this work. All authors reviewed and approved the final version of the manuscript before submission.
Support
This work was supported by a grant from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant number 2013/07559-3), SP, Brazil and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, grant number: 001), Brazil. DMM-G, ABG, AMC, DCR, and AD are supported by fellowships from FAPESP (grants #2018/00142-3, 2019/00213-0, 2019/25948-3, 2019/0048-0 and 2015/25607-0, respectively). I.L.-C. is supported by Conselho Nacional de Pesquisa (CNPq), Brazil (grant #311923/2019-4).
Publication History
Received: 12 February 2021
Accepted: 10 May 2021
Article published online:
30 January 2023
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK. Understanding the role of gut microbiome - host metabolic signal disruption in health and disease. Trends Microbiol 2011; Jul; 19 (07) 349-359 https://doi.org/10.1016/j.tim.2011.05.006
- 2 Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; Aug; 14 (08) e1002533 https://doi.org/10.1371/journal.pbio.1002533
- 3 Turnbaugh PJ, Ley RE, Hamady M, Fraser-liggett CM, Knight R, Gordon JI. The Human Microbiome Project. Nature 2007; Oct; 449(7164) 804-810 https://doi.org/10.1038/nature06244
- 4 Inda ME, Broset E, Lu TK, de la Fuente-Nunez C. Emerging frontiers in microbiome engineering. Trends Immunol 2019; Oct; 40 (10) 952-973 https://doi.org/10.1016/j.it.2019.08.007
- 5 Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 2009; May; 6 (05) 306-314 https://doi.org/10.1038/nrgastro.2009.35
- 6 Feng Q, Chen WD, Wang YD. Gut microbiota: An integral moderator in health and disease. Front Microbiol 2018; Feb; 9: 151-151 https://doi.org/10.3389/fmicb.2018.00151
- 7 Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017; Feb; 20 (02) 145-155 https://doi.org/10.1038/nn.4476
- 8 Griffiths JA, Mazmanian SK. Emerging evidence linking the gut microbiome to neurologic disorders. Genome Med 2018; Dec; 10 (01) 98-98 https://doi.org/10.1186/s13073-018-0609-3
- 9 Allaband C, McDonald D, Vázquez-Baeza Y, Minich JJ, Tripathi A, Brenner DA. et al. Microbiome 101: studying, analyzing, and interpreting gut microbiome data for clinicians. Clin Gastroenterol Hepatol 2019; Jan; 17 (02) 218-230 https://doi.org/10.1016/j.cgh.2018.09.017
- 10 Stappenbeck TS, Hooper L V., Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 2002; Nov; 99 (24) 15451-15455 https://doi.org/10.1073/pnas.202604299
- 11 Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol 2011; Oct; 2 (94) 1-15 https://doi.org/10.3389/fphys.2011.00094
- 12 Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004; Jul; 118 (02) 229-241 https://doi.org/10.1016/j.cell.2004.07.002
- 13 Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 2004; Jul; 127 (01) 224-238 https://doi.org/10.1053/j.gastro.2004.04.015
- 14 Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014; May; 38: 1-12 https://doi.org/10.1016/j.bbi.2013.12.015
- 15 Powell N, Walker MM, Talley NJ. The mucosal immune system: master regulator of bidirectional gut-brain communications. Nat Rev Gastroenterol Hepatol 2017; Mar; 14 (03) 143-159 https://doi.org/10.1038/nrgastro.2016.191
- 16 Chen X, D’Souza R, Hong ST. The role of gut microbiota in the gut-brain axis: Current challenges and perspectives. Protein Cell 2013; Jun; 4 (06) 403-414 https://doi.org/10.1007/s13238-013-3017-x
- 17 Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol 2018; Apr; 6 (02) 133-148 https://doi.org/10.1016/j.jcmgh.2018.04.003
- 18 Calvani R, Picca A, Rita M, Landi F, Bernabei R, Marzetti E. Of microbes and minds: a narrative review on the second brain aging. Front Med (Lausanne) 2018; Mar; 5: 53-53 https://doi.org/10.3389/fmed.2018.00053
- 19 Möhle L, Mattei D, Heimesaat MM, Bereswill S, Fischer A, Alutis M. et al. Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep 2016; May; 15 (09) 1945-1956 https://doi.org/10.1016/j.celrep.2016.04.074
- 20 Erny D, De Angelis ALH, Jaitin D, Wieghofer P, Staszewski O, David E. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; Jul; 18 (07) 965-977 https://doi.org/10.1038/nn.4030
- 21 Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am 2017; Mar; 46 (01) 77-89 https://doi.org/10.1016/j.gtc.2016.09.007
- 22 Colpitts SL, Kasper LH. Influence of the gut microbiome on autoimmunity in the central nervous system. J Immunol 2017; Jan; 198 (02) 596-604 https://doi.org/10.4049/jimmunol.1601438
- 23 Hughes LE, Smith PA, Bonell S, Natt RS, Wilson C, Rashid T. et al. Cross-reactivity between related sequences found in Acinetobacter sp., Pseudomonas aeruginosa, myelin basic protein and myelin oligodendrocyte glycoprotein in multiple sclerosis. J Neuroimmunol 2003; Nov; 144(1-2) 105-115 https://doi.org/10.1016/s0165-5728(03)00274-1
- 24 Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S, Nelson CA. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci U S A 2017; Oct; 114 (40) 10713-10718 https://doi.org/10.1073/pnas.1711235114
- 25 Canani RB, Di Costanzo M, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 2011; Mar; 17 (12) 1519-1528 https://doi.org/10.3748/wjg.v17.i12.1519
- 26 Cantarel BL, Waubant E, Chehoud C, Kuczynski J, Desantis TZ, Warrington J. et al. Gut microbiota in multiple sclerosis: Possible influence of immunomodulators. J Investig Med 2015; Jun; 63 (05) 729-734 https://doi.org/10.1097/JIM.20210052202100520192
- 27 Jangi S, Gandhi R, Cox LM, Li N, Von Glehn F, Yan R. et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 2016; Jun; 7: 1-11 https://doi.org/10.1038/ncomms12015
- 28 Tremlett H, Fadrosh DW, Faruqi AA, Hart J, Roalstad S, Graves J. et al. Gut microbiota composition and relapse risk in pediatric MS: A pilot study. J Neurol Sci 2016; Apr; 363: 153-157 https://doi.org/10.1016/j.jns.2016.02.042
- 29 Saresella M, Mendozzi L, Rossi V, Mazzali F, Piancone F, LaRosa F. et al. Immunological and clinical effect of diet modulation of the gut microbiome in multiple sclerosis patients: A pilot study. Front Immunol 2017; Oct; 8: 1-11 https://doi.org/10.3389/fimmu.2017.01391
- 30 Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T. et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016; Apr; 15 (04) 391-404 https://doi.org/10.1016/S1474-4422(15)00401-9
- 31 Lancaster E, Dalmau J. Neuronal autoantigens-pathogenesis, associated disorders and antibody testing. Nat Rev Neurol 2012; Jun; 8 (07) 380-390 https://doi.org/10.1038/nrneurol.2012.99
- 32 Gong X, Liu X, Li C, Chen C, Lin J, Li A. et al. Alterations in the human gut microbiome in anti-N-methyl-D-aspartate receptor encephalitis. Ann Clin Transl Neurol 2019; Sep; 6 (09) 1771-1781 https://doi.org/10.1002/acn3.50874
- 33 Haase S, Haghikia A, Wilck N, Müller DN, Linker RA. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology 2018; Jun; 154 (02) 230-238 https://doi.org/10.1111/imm.12933
- 34 Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne) 2020; Jan; 11: 1-14 https://doi.org/10.3389/fendo.2020.00025
- 35 Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol 2019; Mar; 17 (03) 156-166 https://doi.org/10.1038/s41579-018-0129-6
- 36 Wen SW, Wong CHY. An unexplored brain-gut microbiota axis in stroke. Gut Microbes 2017; Nov; 8 (06) 601-606 https://doi.org/10.1080/19490976.2017.1344809
- 37 Org E, Blum Y, Kasela S, Mehrabian M, Kuusisto J, Kangas AJ. et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol 2017; Apr; 18 (01) 70-70 https://doi.org/10.1186/s13059-017-1194-2
- 38 Haak BW, Westendorp WF, van Engelen TSR, Brands X, Brouwer MC, Vermeij JD. et al. Disruptions of anaerobic gut bacteria are associated with stroke and post-stroke infection: a prospective case-control study. Transl Stroke Res 2020; Oct; 1-12 https://doi.org/10.1007/s12975-020-00863-4
- 39 Li N, Weng X, Sun C, Wu X, Lu M, Si Y. et al. Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol 2019; Aug; 19 (01) 1-8 https://doi.org/10.1186/s12866-019-1552-1
- 40 Arya AK, Hu B. Brain-gut axis after stroke. Brain Circ 2018; Oct-Dec 4 (04) 165-173 https://doi.org/10.4103/bc.bc_32_18
- 41 Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012; Dec; 3 (01) 1245-1245 https://doi.org/10.1038/ncomms2266
- 42 Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B. et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci 2016; Jul; 36 (28) 7428-7440 https://doi.org/10.1523/JNEUROSCI.1114-16.2016
- 43 Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med 2016; May; 22 (05) 516-523 https://doi.org/10.1038/nm.4068
- 44 Zeng X, Gao X, Peng Y, Wu Q, Zhu J, Tan C. et al. Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrate-producing bacteria in the gut. Front Cell Infect Microbiol 2019; Feb; 9: 4-4 https://doi.org/10.3389/fcimb.2019.00004
- 45 Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT. et al. Dysbiosis of gut microbiota with reduced trimethylamine-n-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc 2015; Nov; 4 (11) e002699 https://doi.org/10.1161/JAHA.115.002699
- 46 Xia GH, You C, Gao XX, Zeng XL, Zhu JJ, Xu KY. et al. Stroke dysbiosis index (SDI) in gut microbiome are associated with brain injury and prognosis of stroke. Front Neurol 2019; Apr; 10: 397-397 https://doi.org/10.3389/fneur.2019.00397
- 47 Kowalski K, Mulak A. Brain-gut-microbiota axis in Alzheimer’s disease. J Neurogastroenterol Motil 2019; Jan; 25 (01) 48-60 https://doi.org/10.5056/jnm18087
- 48 Welcome MO. Gut microbiota disorder, gut epithelial and blood-brain barrier dysfunctions in etiopathogenesis of dementia: molecular mechanisms and signaling pathways. Neuromolecular Med 2019; Sep; 21 (03) 205-226 https://doi.org/10.1007/s12017-019-08547-5
- 49 Fox M, Knorr DA, Haptonstall KM. Alzheimer’s disease and symbiotic microbiota: an evolutionary medicine perspective. Ann N Y Acad Sci 2019; Aug; 1449 (01) 3-24 https://doi.org/10.1111/nyas.14129
- 50 Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease-a critical review. Mol Neurobiol 2019; Mar; 56 (03) 1841-1851 https://doi.org/10.1007/s12035-018-1188-4
- 51 Pistollato F, Cano SS, Elio I, Vergara MM, Giampieri F, Battino M. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 2016; Oct; 74 (10) 624-634 https://doi.org/10.1093/nutrit/nuw023
- 52 Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC. et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; Oct; 7 (01) 13537-13537 https://doi.org/10.1038/s41598-017-13601-y
- 53 Liu P, Wu L, Peng G, Han Y, Tang R, Ge J. et al. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun 2019; Aug; 80: 633-643 https://doi.org/10.1016/j.bbi.2019.05.008
- 54 Gulaj E, Pawlak K, Bien B, Pawlak D. Kynurenine and its metabolites in Alzheimer’s disease patients. Adv Med Sci 2010; 55 (02) 204-211 https://doi.org/10.2478/v10039-010-0023-6
- 55 Alkasir R, Li J, Li X, Jin M, Zhu B. Human gut microbiota: the links with dementia development. Protein Cell 2017; Feb; 8 (02) 90-102 https://doi.org/10.1007/s13238-016-0338-6
- 56 Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 2019; Sep; 47: 529-542 https://doi.org/10.1016/j.ebiom.2019.08.032
- 57 Chen Z, Brodie MJ, Liew D, Kwan P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs a 30-year longitudinal cohort study. JAMA Neurol 2018; Mar; 75 (03) 279-286 https://doi.org/10.1001/jamaneurol.2017.3949
- 58 Devinsky O, Vezzani A, O’Brien TJ, Jette N, Scheffer IE, De Curtis M. et al. Epilepsy. Nat Rev Dis Primers 2018; May; 4: 18024-18024 https://doi.org/10.1038/nrdp.2018.24
- 59 Cabrera-Mulero A, Tinahones A, Bandera B, Moreno-Indias I, Macías-González M, Tinahones FJ. Keto microbiota: A powerful contributor to host disease recovery. Rev Endocr Metab Disord 2019; Dec; 20 (04) 415-425 https://doi.org/10.1007/s11154-019-09518-8
- 60 Ang QY, Alexander M, Newman JC, Tian Y, Cai J, Upadhyay V. et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 2020; Jun; 181 (06) 1263-1275.e16 https://doi.org/10.1016/j.cell.2020.04.027
- 61 Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 2018; Jun; 173 (07) 1728-1741.e13 https://doi.org/10.1016/j.cell.2018.04.027
- 62 Lindefeldt M, Eng A, Darban H, Bjerkner A, Zetterström CK, Allander T. et al. The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes 2019; Jan; 5 (01) 1-13 https://doi.org/10.1038/s41522-018-0073-2
- 63 Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res 2018; Sep; 145: 163-168 https://doi.org/10.1016/j.eplepsyres.2018.06.015
- 64 Xie G, Qian Z, Qiu C-Z, Dai W-K, Wang H-P, Li Y-H. et al. Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J Gastroenterol 2017; Sep; 23 (33) 6164-6171 https://doi.org/10.3748/wjg.v23.i33.6164
- 65 Dahlin M, Prast-Nielsen S. The gut microbiome and epilepsy. EBioMedicine 2019; Jun; 44: 741-746 https://doi.org/10.1016/j.ebiom.2019.05.024
- 66 Lee K, Kim N, Shim JO, Kim G-H. Gut bacterial dysbiosis in children with intractable epilepsy. J Clin Med 2021; Jan; 10 (01) 5-5 https://doi.org/10.3390/jcm10010005
- 67 Şafak B, Altunan B, Topçu B, Eren Topkaya A. The gut microbiome in epilepsy. Microb Pathog 2020; Feb; 139: 103853-103853 https://doi.org/10.1016/j.micpath.2019.103853
- 68 Peng A, Qiu X, Lai W, Li W, Zhang L, Zhu X. et al. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res 2018; Nov; 147: 102-107 https://doi.org/10.1016/j.eplepsyres.2018.09.013
- 69 Gong X, Liu X, Chen C, Lin J, Li A, Guo K. et al. Alteration of gut microbiota in patients with epilepsy and the potential index as a biomarker. Front Microbiol 2020; Sep; 11: 517797-517797 https://doi.org/10.3389/fmicb.2020.517797
- 70 Gómez-Eguílaz M, Ramón-Trapero JL, Pérez-Martínez L, Blanco JR. The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: A pilot study. Benef Microbes 2018; Dec; 9 (06) 875-881 https://doi.org/10.3920/BM2018.0018
- 71 Braakman HMH, van Ingen J. Can epilepsy be treated by antibiotics?. J Neurol 2018; Aug; 265 (08) 1934-1936 https://doi.org/10.1007/s00415-018-8943-3
- 72 Kalia LV, Lang AE. Parkinson’s disease. Lancet 2015; Aug; 386(9996) 896-912 https://doi.org/10.1016/S0140-6736(14)61393-3
- 73 Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB. et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord 2015; Sep; 30 (10) 1351-1360 https://doi.org/10.1002/mds.26307
- 74 Aho VTE, Houser MC, Pereira PAB, Chang J, Rudi K, Paulin L. et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol Neurodegener 2021; Feb; 16 (01) 6-6 https://doi.org/10.1186/s13024-021-00427-6
- 75 Aho VTE, Pereira PAB, Voutilainen S, Paulin L, Pekkonen E, Auvinen P. et al. Gut microbiota in Parkinson’s disease: temporal stability and relations to disease progression. EBioMedicine 2019; Jun; 44: 691-707 https://doi.org/10.1016/j.ebiom.2019.05.064
- 76 Li C, Cui L, Yang Y, Miao J, Zhao X, Zhang J. et al. Gut microbiota differs between parkinson’s disease patients and healthy controls in northeast China. Front Mol Neurosci 2019; Jul; 12: 171-171 https://doi.org/10.3389/fnmol.2019.00171
- 77 Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E. et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 2015; Mar; 30 (03) 350-358 https://doi.org/10.1002/mds.26069
- 78 Pereira PAB, Aho VTE, Paulin L, Pekkonen E, Auvinen P, Scheperjans F. Oral and nasal microbiota in Parkinson’s disease. Parkinsonism Relat Disord 2017; May; 38: 61-67 https://doi.org/10.1016/j.parkreldis.2017.02.026
- 79 Houser MC, Tansey MG. The gut-brain axis: Is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis?. NPJ Parkinsons Dis [Internet] 2017; Jan; 3 (03) 1-9 https://doi.org/10.1038/s41531-016-0002-0
- 80 Liu B, Fang F, Pedersen NL, Tillander A, Ludvigsson JF, Ekbom A. et al. Vagotomy and Parkinson disease. Neurology 2017; May; 88 (21) 1996-2002 https://doi.org/10.1212/WNL.20210052202100523961
- 81 Sun MF, Shen YQ. Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s disease. Ageing Res Rev 2018; Aug; 45: 53-61 https://doi.org/10.1016/j.arr.2018.04.004
- 82 Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S. et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 2019; Aug; 103 (04) 627-641.e7 https://doi.org/10.1016/j.neuron.2019.05.035
- 83 Lefter R, Ciobica A, Timofte D, Stanciu C, Trifan A. A descriptive review on the prevalence of gastrointestinal disturbances and their multiple associations in autism spectrum disorder. Medicina (Kaunas) 2019; Dec; 56 (01) 11-11 https://doi.org/10.3390/medicina56010011
- 84 Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism - comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011; Mar; 11: 22-22 https://doi.org/10.1186/1471-230X-11-22
- 85 de Theije CGM, Wopereis H, Ramadan M, van Eijndthoven T, Lambert J, Knol J. et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 2014; Mar; 37: 197-120 https://doi.org/10.1016/j.bbi.2013.12.005
- 86 Liu F, Horton-Sparks K, Hull V, Li RW, Martínez-Cerdeño V. The valproic acid rat model of autism presents with gut bacterial dysbiosis similar to that in human autism. Mol Autism 2018; Dec; 9: 61-61 https://doi.org/10.1186/s13229-018-0251-3
- 87 Severance EG, Prandovszky E, Castiglione J, Yolken RH. Gastroenterology Issues in schizophrenia: why the gut matters. Curr Psychiatry Rep 2015; May; 17 (05) 27-27 https://doi.org/10.1007/s11920-015-0574-0
- 88 Severance EG, Yolken RH, Eaton WW. Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr Res 2016; Sep; 176 (01) 23-35 https://doi.org/10.1016/j.schres.2014.06.027
- 89 Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y. et al. Correction for the Research Article: The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv 2019; Jun 21; 5: 06 https://doi.org/10.1126/sciadv.aay2759
- 90 Flowers SA, Baxter NT, Ward KM, Kraal AZ, McInnis MG, Schmidt TM. et al. Effects of atypical antipsychotic treatment and resistant starch supplementation on gut microbiome composition in a cohort of patients with bipolar disorder or schizophrenia. Pharmacotherapy 2019; Feb; 39 (02) 161-170 https://doi.org/10.1002/phar.2214
- 91 Schwarz E, Maukonen J, Hyytiäinen T, Kieseppä T, Orešič M, Sabunciyan S. et al. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr Res 2018; Feb; 192: 398-403 https://doi.org/10.1016/j.schres.2017.04.017
- 92 Kelly JR, Borre Y, O’ Brien C, Patterson E, El Aidy S, Deane J. et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 2016; Nov; 82: 109-118 https://doi.org/10.1016/j.jpsychires.2016.07.019
- 93 Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X. et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 2016; Jun; 21 (06) 786-796 https://doi.org/10.1038/mp.2016.44
- 94 Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M. et al. The microbiota-gut-brain axis. Physiol Rev 2019; Oct; 99 (04) 1877-2013 https://doi.org/10.1152/physrev.00018.2018
- 95 Park AJ, Collins J, Blennerhassett PA, Ghia JE, Verdu EF, Bercik P. et al. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol Motil 2013; Sep; 25 (09) 733-e575 https://doi.org/10.1111/nmo.12153
- 96 de Weerth C. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci Biobehav Rev 2017; Oct; 83: 458-471 https://doi.org/10.1016/j.neubiorev.2017.09.016
- 97 Murakami T, Kamada K, Mizushima K, Higashimura Y, Katada K, Uchiyama K. et al. Changes in intestinal motility and gut microbiota composition in a rat stress model. Digestion 2017; 95 (01) 55-60 https://doi.org/10.1159/000452364
- 98 Li N, Wang Q, Wang Y, Sun A, Lin Y, Jin Y. et al. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress 2019; Sep; 22 (05) 592-602 https://doi.org/10.1080/10253890.2019.1617267