Subscribe to RSS

DOI: 10.1590/0004-282X-ANP-2021-0134
Optical coherence tomography in neurodegenerative disorders
Tomografia de coerência óptica em doenças neurodegenerativas
ABSTRACT
Structural imaging of the brain is the most widely used diagnostic tool for investigating neurodegenerative diseases. More advanced structural imaging techniques have been applied to early or prodromic phases, but they are expensive and not widely available. Therefore, it is highly desirable to search for noninvasive, easily accessible, low-cost clinical biomarkers suitable for large-scale population screening, in order to focus on making diagnoses at the earliest stages of the disease. In this scenario, imaging studies focusing on the structures of the retina have increasingly been used for evaluating neurodegenerative diseases. The retina shares embryological, histological, biochemical, microvascular and neurotransmitter similarities with the cerebral cortex, thus making it a uniquely promising biomarker for neurodegenerative diseases. Optical coherence tomography is a modern noninvasive imaging technique that provides high-resolution two-dimensional cross-sectional images and quantitative reproducible three-dimensional volumetric measurements of the optic nerve head and retina. This technology is widely used in ophthalmology practice for diagnosing and following up several eye diseases, such as glaucoma, diabetic retinopathy and age-related macular degeneration. Its clinical impact on neurodegenerative diseases has raised enormous interest over recent years, as several clinical studies have demonstrated that these diseases give rise to reduced thickness of the inner retinal nerve fiber layer, mainly composed of retinal ganglion cells and their axons. In this review, we aimed to address the clinical utility of optical coherence tomography for diagnosing and evaluating different neurodegenerative diseases, to show the potential of this noninvasive and easily accessible method.
RESUMO
A avaliação estrutural do cérebro, feita por meio dos exames de neuroimagem, é a forma mais utilizada de ferramenta diagnóstica e de acompanhamento das doenças neurodegenerativas. Técnicas de imagem mais sofisticadas podem ser necessárias especialmente nas fases mais precoces, antes mesmo do surgimento de quaisquer sintomas, porém costumam ser caras e pouco acessíveis. Sendo assim, é de fundamental importância a busca de biomarcadores não invasivos, de fácil acesso e baixo custo, que possam ser utilizados para rastreio populacional e diagnóstico mais precoce. Nesse cenário, o número de estudos com ênfase em técnicas de imagem para avaliação estrutural da retina em pacientes com doenças neurodegenerativas tem aumentado nos últimos anos. A retina apresenta similaridade embriológica, histológica, bioquímica, microvascular e neurotransmissora com o córtex cerebral, tornando-se assim um biomarcador único e promissor nas doenças neurodegenerativas. A tomografia de coerência óptica é uma moderna técnica de imagem não invasiva que gera imagens seccionais bidimensionais de alta resolução e medidas volumétricas tridimensionais reprodutivas do disco óptico e da mácula. Essa tecnologia é amplamente utilizada na prática oftalmológica para o diagnóstico e o seguimento de diversas doenças oculares, como glaucoma, retinopatia diabética e degeneração macular relacionada à idade. A redução da espessura da camada de fibras nervosas da retina e das camadas de células ganglionares em pacientes com doenças neurodegenerativas foi demonstrada em diversos estudos clínicos nos últimos anos. Nesta revisão, abordamos as principais aplicações clínicas da tomografia de coerência óptica nas doenças neurodegenerativas e discutimos o seu papel como potencial biomarcador nessas afecções.
Keywords:
Tomography, Optical Coherence - Alzheimer Disease - Parkinson Disease - Multiple Sclerosis - Neurodegenerative Diseases - Amyotrophic Lateral Sclerosis - RetinaPalavras-chave:
Tomografia de Coerência Óptica - Doença de Alzheimer - Doença de Parkinson - Esclerose Múltipla - Doenças Neurodegenerativas - Esclerose Amiotrófica Lateral - RetinaAuthors’ contributions:
LPC, TCV: article conception, literature review, first draft, manuscript critical review, final edits; LAP, MMC, ALMA, NS: literature review, first draft, manuscript critical review; LCM, PNM: literature review, first draft.
Publication History
Received: 06 April 2021
Accepted: 15 June 2021
Article published online:
30 January 2023
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Heemels MT. Neurodegenerative diseases. Nature 2016; Nov; 539(7628) 179-179 https://doi.org/10.1038/539179a
- 2 Vadakkan KI. Neurodegenerative disorders share common features of “loss of function” states of a proposed mechanism of nervous system functions. Biomed Pharmacother 2016; Oct; 83: 412-430 https://doi.org/10.1016/j.biopha.2016.06.042
- 3 Risacher SL, Saykin AJ. Neuroimaging and other biomarkers for Alzheimer’s disease: the changing landscape of early detection. Annu Rev Clin Psychol 2013; Jan; 9: 621-648 https://doi.org/10.1146/annurev-clinpsy-050212-185535
- 4 Alber J, Goldfarb D, Thompson LI, Arthur E, Hernandez K, Cheng D. et al. Developing retinal biomarkers for the earliest stages of Alzheimer’s disease: what we know, what we don’t, and how to move forward. Alzheimers Dement 2020; Jan; 16 (01) 229-243 https://doi.org/10.1002/alz.12006
- 5 Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W. et al. Optical coherence tomography. Science 1991; Nov; 254(5035) 1178-1181 https://doi.org/10.1126/science.1957169
- 6 Chan VTT, Sun Z, Tang S, Chen LJ, Wong A, Tham CC. et al. Spectral-domain OCT measurements in Alzheimer’s disease: a systematic review and meta-analysis. Ophthalmology 2019; Apr; 126 (04) 497-510 https://doi.org/10.1016/j.ophtha.2018.08.009
- 7 Fingler J, Readhead C, Schwartz DM, Fraser SE. Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid. Invest Ophthalmol Vis Sci 2008; Nov; 49 (11) 5055-5059 https://doi.org/10.1167/iovs.07-1627
- 8 Costa-Cunha LV, Cunha LP, Malta RF, Monteiro ML. Comparison of Fourier-domain and time-domain optical coherence tomography in the detection of band atrophy of the optic nerve. Am J Ophthalmol 2009; Jan; 147 (01) 56-63 https://doi.org/10.1016/j.ajo.2008.07.020
- 9 Sanford AM. Mild cognitive impairment. Clin Geriatr Med 2017; Aug; 33 (03) 325-337 https://doi.org/10.1016/j.cger.2017.02.005
- 10 Dunne RA, Aarsland D, O’Brien JT, Ballard C, Banerjee S, Fox NC. et al. Mild cognitive impairment: the Manchester consensus. Age Ageing 2021; Jan; 50 (01) 72-80 https://doi.org/10.1093/ageing/afaa228
- 11 Lee MJ, Abraham AG, Swenor BK, Sharrett AR, Ramulu PY. Application of optical coherence tomography in the detection and classification of cognitive decline. J Curr Glaucoma Pract 2018; Jan-Apr 12 (01) 10-18 https://doi.org/10.5005/jp-journals-10028-1238
- 12 Paquet C, Boissonnot M, Roger F, Dighiero P, Gil R, Hugon J. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 2007; Jun; 420 (02) 97-99 https://doi.org/10.1016/j.neulet.2007.02.090
- 13 Gao L, Liu Y, Li X, Bai Q, Liu P. Abnormal retinal nerve fiber layer thickness and macula lutea in patients with mild cognitive impairment and Alzheimer’s disease. Arch Gerontol Geriatr 2015; Jan-Feb 60 (01) 162-167 https://doi.org/10.1016/j.archger.2014.10.011
- 14 Almeida ALM, Pires LA, Figueiredo EA, Costa-Cunha LVF, Zacharias LC, Preti RC. et al. Correlation between cognitive impairment and retinal neural loss assessed by swept-source optical coherence tomography in patients with mild cognitive impairment. Alzheimers Dement (Amst) 2019; Sep; 11: 659-669 https://doi.org/10.1016/j.dadm.2019.08.006
- 15 Zhang YS, Zhou N, Knoll BM, Samra S, Ward MR, Weintraub S. et al. Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer’s disease on optical coherence tomography angiography. PLoS One 2019; Apr; 14 (04) e0214685 https://doi.org/10.1371/journal.pone.0214685
- 16 Criscuolo C, Cennamo G, Montorio D, Carotenuto A, Strianese A, Salvatore E. et al. Assessment of retinal vascular network in amnestic mild cognitive impairment by optical coherence tomography angiography. PLoS One 2020; Jun; 15 (06) e0233975 https://doi.org/10.1371/journal.pone.0233975
- 17 Yoon SP, Thompson AC, Polascik BW, Calixte C, Burke JR, Petrella JR. et al. Correlation of OCTA and volumetric MRI in mild cognitive impairment and Alzheimer’s disease. Ophthalmic Surg Lasers Imaging Retina 2019; Nov; 50 (11) 709-718 https://doi.org/10.3928/23258160-20191031-06
- 18 Salobrar-Garcia E, de Hoz R, Ramirez AI, Lopez-Cuenca I, Rojas P, Vazirani R. et al. Changes in visual function and retinal structure in the progression of Alzheimer’s disease. PLoS One 2019; Aug; 14 (08) e0220535 https://doi.org/10.1371/journal.pone.0220535
- 19 Armstrong RA. Visual field defects in Alzheimer’s disease patients may reflect differential pathology in the primary visual cortex. Optom Vis Sci 1996; Nov; 73 (11) 677-682 https://doi.org/10.1097/00006324-199611000-00001
- 20 Cronin-Golomb A. Vision in Alzheimer’s disease. Gerontologist 1995; Jun; 35 (03) 370-376 https://doi.org/10.1093/geront/35.3.370
- 21 Curcio CA, Drucker DN. Retinal ganglion cells in Alzheimer’s disease and aging. Ann Neurol 1993; Mar; 33 (03) 248-257 https://doi.org/10.1002/ana.410330305
- 22 Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci MG, Pierelli F. Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol 2001; Oct; 112 (10) 1860-1867 https://doi.org/10.1016/s1388-2457(01)00620-4
- 23 Hinton DR, Sadun AA, Blanks JC, Miller CA. Optic-nerve degeneration in Alzheimer’s disease. N Engl J Med 1986; Aug; 315 (08) 485-487 https://doi.org/10.1056/NEJM198608213150804
- 24 Cunha LP, Lopes LC, Costa-Cunha LV, Costa CF, Pires LA, Almeida AL. et al. Macular thickness measurements with frequency domain-OCT for quantification of retinal neural loss and its correlation with cognitive impairment in Alzheimer’s disease. PLoS One 2016; Apr; 11 (04) e0153830 https://doi.org/10.1371/journal.pone.0153830
- 25 Iseri PK, Altinas O, Tokay T, Yuksel N. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuroophthalmol 2006; Mar; 26 (01) 18-24 https://doi.org/10.1097/01.wno.0000204645.56873.26
- 26 Kesler A, Vakhapova V, Korczyn AD, Naftaliev E, Neudorfer M. Retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Clin Neurol Neurosurg 2011; Sep; 113 (07) 523-526 https://doi.org/10.1016/j.clineuro.2011.02.014
- 27 Kirbas S, Turkyilmaz K, Anlar O, Tufekci A, Durmus M. Retinal nerve fiber layer thickness in patients with Alzheimer disease. J Neuroophthalmol 2013; Mar; 33 (01) 58-61 https://doi.org/10.1097/WNO.0b013e318267fd5f
- 28 Lu Y, Li Z, Zhang X, Ming B, Jia J, Wang R. et al. Retinal nerve fiber layer structure abnormalities in early Alzheimer’s disease: evidence in optical coherence tomography. Neurosci Lett 2010; Aug; 480 (01) 69-72 https://doi.org/10.1016/j.neulet.2010.06.006
- 29 Marziani E, Pomati S, Ramolfo P, Cigada M, Giani A, Mariani C. et al. Evaluation of retinal nerve fiber layer and ganglion cell layer thickness in Alzheimer’s disease using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013; Sep; 54 (09) 5953-5958 https://doi.org/10.1167/iovs.13-12046
- 30 Moreno-Ramos T, Benito-Leon J, Villarejo A, Bermejo-Pareja F. Retinal nerve fiber layer thinning in dementia associated with Parkinson’s disease, dementia with Lewy bodies, and Alzheimer’s disease. J Alzheimers Dis 2013; 34 (03) 659-664 https://doi.org/10.3233/JAD-1219
- 31 Moschos MM, Markopoulos I, Chatziralli I, Rouvas A, Papageorgiou SG, Ladas I. et al. Structural and functional impairment of the retina and optic nerve in Alzheimer’s disease. Curr Alzheimer Res 2012; Sep; 9 (07) 782-788 https://doi.org/10.2174/156720512802455340
- 32 Cunha LP, Almeida AL, Costa-Cunha LV, Costa CF, Monteiro ML. The role of optical coherence tomography in Alzheimer’s disease. Int J Retina Vitreous 2016; Oct; 2: 24-24 https://doi.org/10.1186/s40942-016-0049-4
- 33 Bulut M, Kurtulus F, Gozkaya O, Erol MK, Cengiz A, Akidan M. et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br J Ophthalmol 2018; 102 (02) 233-237 https://doi.org/10.1136/bjophthalmol-2017-310476
- 34 Zhang JF, Wiseman S, Valdes-Hernandez MC, Doubal FN, Dhillon B, Wu YC. et al. The application of optical coherence tomography angiography in cerebral small vessel disease, ischemic stroke, and dementia: a systematic review. Front Neurol 2020; Sep; 11: 1009-1009 https://doi.org/10.3389/fneur.2020.01009
- 35 Song A, Johnson N, Ayala A, Thompson AC. Optical coherence tomography in patients with alzheimer’s disease: what can it tell us?. Eye Brain 2021; Jan; 13: 1-20 https://doi.org/10.2147/EB.S235238
- 36 Santos CY, Johnson LN, Sinoff SE, Festa EK, Heindel WC, Snyder PJ. Change in retinal structural anatomy during the preclinical stage of Alzheimer’s disease. Alzheimers Dement (Amst) 2018; Feb; 10: 196-209 https://doi.org/10.1016/j.dadm.2018.01.003
- 37 Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med 2018; Jan; 378 (02) 169-180 https://doi.org/10.1056/NEJMra1401483
- 38 Beck RW, Cleary PA, Anderson Jr. MM, Keltner JL, Shults WT, Kaufman DI. et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N Engl J Med 1992; Feb; 326 (09) 581-588 https://doi.org/10.1056/NEJM199202273260901
- 39 Costello F, Hodge W, Pan YI, Eggenberger E, Coupland S, Kardon RH. Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography. Mult Scler 2008; Aug; 14 (07) 893-905 https://doi.org/10.1177/1352458508091367
- 40 Parisi V, Manni G, Spadaro M, Colacino G, Restuccia R, Marchi S. et al. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 1999; Oct; 40 (11) 2520-2527
- 41 Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM. et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2017; Oct; 16 (10) 797-812 https://doi.org/10.1016/S1474-4422(17)30278-8
- 42 Garcia-Martin E, Pueyo V, Ara JR, Almarcegui C, Martin J, Pablo L. et al. Effect of optic neuritis on progressive axonal damage in multiple sclerosis patients. Mult Scler 2011; Jul; 17 (07) 830-837 https://doi.org/10.1177/1352458510397414
- 43 Trip SA, Schlottmann PG, Jones SJ, Altmann DR, Garway-Heath DF, Thompson AJ. et al. Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 2005; Sep; 58 (03) 383-391 https://doi.org/10.1002/ana.20575
- 44 Pellegrini M, Vagge A, Ferro Desideri LF, Bernabei F, Triolo G, Mastropasqua R. et al. Optical coherence tomography angiography in neurodegenerative disorders. J Clin Med 2020; Jun; 9 (06) 1706-1706 https://doi.org/10.3390/jcm9061706
- 45 Lanzillo R, Cennamo G, Criscuolo C, Carotenuto A, Velotti N, Sparnelli F. et al. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult Scler 2018; Nov; 24 (13) 1706-1714 https://doi.org/10.1177/1352458517729463
- 46 Lanzillo R, Cennamo G, Moccia M, Criscuolo C, Carotenuto A, Frattaruolo N. et al. Retinal vascular density in multiple sclerosis: a 1-year follow-up. Eur J Neurol 2019; Jan; 26 (01) 198-201 https://doi.org/10.1111/ene.13770
- 47 Spain RI, Liu L, Zhang X, Jia Y, Tan O, Bourdette D. et al. Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis. Br J Ophthalmol 2018; Apr; 102 (04) 520-524 https://doi.org/10.1136/bjophthalmol-2017-310477
- 48 Wang X, Jia Y, Spain R, Potsaid B, Liu JJ, Baumann B. et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol 2014; Oct; 98 (10) 1368-1373 https://doi.org/10.1136/bjophthalmol-2013-304547
- 49 Armstrong RA. Visual signs and symptoms of Parkinson’s disease. Clin Exp Optom 2008; Mar; 91 (02) 129-138 https://doi.org/10.1111/j.1444-0938.2007.00211.x
- 50 Weil RS, Schrag AE, Warren JD, Crutch SJ, Lees AJ, Morris HR. Visual dysfunction in Parkinson’s disease. Brain 2016; Nov; 139 (11) 2827-2843 https://doi.org/10.1093/brain/aww175
- 51 Price MJ, Feldman RG, Adelberg D, Kayne H.. Abnormalities in color vision and contrast sensitivity in Parkinson’s disease. Neurology 1992; Apr; 42 (04) 887-890 https://doi.org/10.1212/WNL.42.4.887
- 52 Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A. Retinal nerve fiber layer thinning in Parkinson disease. Vision Res 2004; Nov; 44 (24) 2793-2797 https://doi.org/10.1016/j.visres.2004.06.009
- 53 Altintaş O, Işeri P, Ozkan B, Cağlar Y. Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol 2008; Mar; 116 (02) 137-146 https://doi.org/10.1007/s10633-007-9091-8
- 54 Hajee ME, March WF, Lazzaro DR, Wolintz AH, Shrier EM, Glazman S. et al. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 2009; Jun; 127 (06) 737-741 https://doi.org/10.1001/archophthalmol.2009.106
- 55 Albrecht P, Muller AK, Sudmeyer M, Ferrea S, Ringelstein M, Cohn E. et al. Optical coherence tomography in parkinsonian syndromes. PLoS One 2012; Apr; 7 (04) e34891 https://doi.org/10.1371/journal.pone.0034891
- 56 Mailankody P, Battu R, Khanna A, Lenka A, Yadav R, Pal PK. Optical coherence tomography as a tool to evaluate retinal changes in Parkinson’s disease. Parkinsonism Relat Disord 2015; Oct; 21 (10) 1164-1169 https://doi.org/10.1016/j.parkreldis.2015.08.002
- 57 Lee JY, Kim JM, Ahn J, Kim HJ, Jeon BS, Kim TW. Retinal nerve fiber layer thickness and visual hallucinations in Parkinson’s Disease. Mov Disord 2014; Jan; 29 (01) 61-67 https://doi.org/10.1002/mds.25543
- 58 Rohani M, Langroodi AS, Ghourchian S, Falavarjani KG, SoUdi R, Shahidi G. Retinal nerve changes in patients with tremor dominant and akinetic rigid Parkinson’s disease. Neurol Sci 2013; May; 34 (05) 689-693 https://doi.org/10.1007/s10072-012-1125-7
- 59 Moschos MM, Chatziralli IP. Evaluation of choroidal and retinal thickness changes in parkinson’s disease using spectral domain optical coherence tomography. Semin Ophthalmol 2018; 33 (04) 494-497 https://doi.org/10.1080/08820538.2017.1307423
- 60 Yildiz D, Pekel NB, Yener NP, Seferoglu M, Gunes A, Sigirli D. Assessment of neurodegeneration by optical coherence tomography and mini-mental test in Parkinson’s disease. Ann Indian Acad Neurol Apr-Jun 2019; 22 (02) 212-216 https://doi.org/10.4103/aian.AIAN_424_17
- 61 Ma LJ, Xu LL, Mao CJ, Fu YT, Ji XY, Shen Y. et al. Progressive changes in the retinal structure of patients with Parkinson’s disease. J Parkinsons Dis 2018; 8 (01) 85-92 https://doi.org/10.3233/JPD-171184
- 62 Satue M, Rodrigo MJ, Obis J, Vilades E, Gracia H, Otin S. et al. Evaluation of progressive visual dysfunction and retinal degeneration in patients with Parkinson’s disease. Invest Ophthalmol Vis Sci 2017; Feb; 58 (02) 1151-1157 https://doi.org/10.1167/iovs.16-20460
- 63 Chrysou A, Jansonius NM, van Laar T. Retinal layers in Parkinson’s disease: A meta-analysis of spectral-domain optical coherence tomography studies. Parkinsonism Relat Disord 2019; Jul; 64: 40-49 https://doi.org/10.1016/j.parkreldis.2019.04.023
- 64 Zhou WC, Tao JX, Li J. Optical coherence tomography measurements as potential imaging biomarkers for Parkinson’s disease: A systematic review and meta-analysis. Eur J Neurol 2020; Mar; 28 (03) 763-774 https://doi.org/10.1111/ene.14613
- 65 Zou J, Liu K, Li F, Xu Y, Shen L, Xu H. Combination of optical coherence tomography (OCT) and OCT angiography increases diagnostic efficacy of Parkinson’s disease. Quant Imaging Med Surg 2020; Oct; 10 (10) 1930-1939 https://doi.org/10.21037/qims-20-460
- 66 Miller RG, Jackson CE, Kasarskis EJ, England JD, Forshew D, Johnston W. et al. Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2009; Oct; 73 (15) 1218-1226 https://doi.org/10.1212/WNL.0b013e3181bc0141
- 67 Ellis CM, Suckling J, Amaro Jr. E, Bullmore ET, Simmons A, Williams SC. et al. Volumetric analysis reveals corticospinal tract degeneration and extramotor involvement in ALS. Neurology 2001; Nov; 57 (09) 1571-1578 https://doi.org/10.1212/WNL.57.9.1571
- 68 Abrahams S, Goldstein LH, Suckling J, Ng V, Simmons A, Chitnis X. et al. Frontotemporal white matter changes in amyotrophic lateral sclerosis. J Neurol 2005; Mar; 252 (03) 321-331 https://doi.org/10.1007/s00415-005-0646-x
- 69 Kassubek J, Unrath A, Huppertz HJ, Lule D, Ethofer T, Sperfeld AD. et al. Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI. Amyotroph Lateral Scler Other Motor Neuron Disord 2005; Dec; 6 (04) 213-220 https://doi.org/10.1080/14660820510038538
- 70 Ringelstein M, Albrecht P, Sudmeyer M, Harmel J, Muller AK, Keser N. et al. Subtle retinal pathology in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2014; Apr; 1 (04) 290-297 https://doi.org/10.1002/acn3.46
- 71 Volpe NJ, Simonett J, Fawzi AA, Siddique T. Ophthalmic manifestations of amyotrophic lateral sclerosis (an American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc 2015; 113: T12-T12
- 72 Rohani M, Meysamie A, Zamani B, Sowlat MM, Akhoundi FH. Reduced retinal nerve fiber layer (RNFL) thickness in ALS patients: a window to disease progression. J Neurol 2018; Jul; 265 (07) 1557-1562 https://doi.org/10.1007/s00415-018-8863-2
- 73 Rojas P, de Hoz R, Ramirez AI, Ferreras A, Salobrar-Garcia E, Munoz-Blanco JL. et al. Changes in retinal OCT and their correlations with neurological disability in early ALS patients, a follow-up study. Brain Sci 2019; 9 (12) 337-337 https://doi.org/10.3390/brainsci9120337
- 74 Hübers A, Muller HP, Dreyhaupt J, Bohm K, Lauda F, Tumani H. et al. Retinal involvement in amyotrophic lateral sclerosis: a study with optical coherence tomography and diffusion tensor imaging. J Neural Transm (Vienna) 2016; Mar; 123 (03) 281-287 https://doi.org/10.1007/s00702-015-1483-4
- 75 Cerveró A, Casado A, Riancho J. Retinal changes in amyotrophic lateral sclerosis: looking at the disease through a new window. J Neurol 2021; Jun; 268 (06) 2083-2089 https://doi.org/10.1007/s00415-019-09654-w
- 76 Dag E, Ornek N, Ornek K, Erbahceci-Timur IE. Optical coherence tomography and visual field findings in patients with Friedreich ataxia. J Neuroophthalmol 2014; Jun; 34 (02) 118-121 https://doi.org/10.1097/WNO.20210134202101340068
- 77 Parkinson MH, Bartmann AP, Clayton LMS, Nethisinghe S, Pfundt R, Chapple JP. et al. Optical coherence tomography in autosomal recessive spastic ataxia of Charlevoix-Saguenay. Brain 2018; Apr; 141 (04) 989-999 https://doi.org/10.1093/brain/awy028
- 78 van Ballegoij WJC, Kuijpers SC, Huffnagel IC, Weinstein HC, Poll-The BT, Engelen M. et al. Optical coherence tomography shows neuroretinal thinning in myelopathy of adrenoleukodystrophy. J Neurol 2020; Mar; 267 (03) 679-687 https://doi.org/10.1007/s00415-019-09627-z
- 79 Bianchi-Marzoli S, Fenu S, Melzi L, Benzoni C, Antonazzo F, Tomas Roldan E. et al. Optical coherence tomography in adult adrenoleukodystrophy: a cross-sectional and longitudinal study. Neurol Sci. 2021; Jan; 42 (01) 235-241 https://doi.org/10.1007/s10072-020-04576-2
- 80 Albrecht P, Muller AK, Ringelstein M, Finis D, Geerling G, Cohn E. et al. Retinal neurodegeneration in Wilson’s disease revealed by spectral domain optical coherence tomography. PLoS One 2012; 7 (11) e49825 https://doi.org/10.1371/journal.pone.0049825
- 81 Langwinska-Wosko E, Litwin T, Szulborski K, Czlonkowska A. Optical coherence tomography and electrophysiology of retinal and visual pathways in Wilson’s disease. Metab Brain Dis 2016; Mar; 31 (02) 405-415 https://doi.org/10.1007/s11011-015-9776-8
- 82 Langwinska-Wosko E, Litwin T, Dziezyc K, Karlinski M, Czlonkowska A. Optical coherence tomography as a marker of neurodegeneration in patients with Wilson’s disease. Acta Neurol Belg 2017; May; 117 (04) 867-871 https://doi.org/10.1007/s13760-017-0788-5
- 83 Kersten HM, Danesh-Meyer HV, Kilfoyle DH, Roxburgh RH. Optical coherence tomography findings in Huntington’s disease: a potential biomarker of disease progression. J Neurol 2015; Nov; 262 (11) 2457-2465 https://doi.org/10.1007/s00415-015-7869-2
- 84 Andrade C, Beato J, Monteiro A, Costa A, Penas S, Guimaraes J. et al. Spectral-domain optical coherence tomography as a potential biomarker in Huntington’s disease. Mov Disord 2016; Mar; 31 (03) 377-383 https://doi.org/10.1002/mds.26486
- 85 Gatto E, Parisi V, Persi G, Fernandez Rey E, Cesarini M, Luis Etcheverry J. et al. Optical coherence tomography (OCT) study in Argentinean Huntington’s disease patients. Int J Neurosci 2018; Dec; 128 (12) 1157-1162 https://doi.org/10.1080/00207454.2018.1489807
- 86 Gulmez Sevim D, Unlu M, Gultekin M, Karaca C. Retinal single-layer analysis with optical coherence tomography shows inner retinal layer thinning in Huntington’s disease as a potential biomarker. Int Ophthalmol 2019; Mar; 39 (03) 611-621 https://doi.org/10.1007/s10792-018-0857-7
- 87 Di Maio LG, Montorio D, Peluso S, Dolce P, Salvatore E, De Michele G. et al. Optical coherence tomography angiography findings in Huntington’s disease. Neurol Sci 2020; Jul; 42: 905-1001 https://doi.org/10.1007/s10072-020-04611-2
- 88 Mailankody P, Lenka A, Pal PK. The role of Optical Coherence Tomography in Parkinsonism: a critical review. J Neurol Sci 2019; Aug; 403: 67-74 https://doi.org/10.1016/j.jns.2019.06.009
- 89 Rufa A, Pretegiani E, Frezzotti P, De Stefano N, Cevenini G, Dotti MT. et al. Retinal nerve fiber layer thinning in CADASIL: an optical coherence tomography and MRI study. Cerebrovasc Dis 2011; 31 (01) 77-82 https://doi.org/10.1159/000321339
- 90 Ferrari L, Huang SC, Magnani G, Ambrosi A, Comi G, Leocani L. Optical coherence tomography reveals retinal neuroaxonal thinning in frontotemporal dementia as in Alzheimer’s disease. J Alzheimers Dis 2017; Feb; 56 (03) 1101-1107 https://doi.org/10.3233/JAD-160886
- 91 Jafri MS, Farhang S, Tang RS, Desai N, Fishman PS, Rohwer RG. et al. Optical coherence tomography in the diagnosis and treatment of neurological disorders. J Biomed Opt 2005; Oct; 10 (05) 051603-051603 https://doi.org/10.1117/1.2116967
- 92 Mello LGM, Bissoli LB, Saraiva FP, Maia RPD, Monteiro MLR. Retinal layers and choroid measurements in Parkinson’s disease with or without pramipexole treatment. Mov Disord 2020; Dec; 35 (12) 2357-2359 https://doi.org/10.1002/mds.28280