Subscribe to RSS
DOI: 10.1590/0004-282X-ANP-2022-S128
How to choose initial treatment in multiple sclerosis patients: a case-based approach
Como escolher o tratamento inicial na esclerose múltipla: uma abordagem baseada em casosABSTRACT
Background: Immunotherapy dramatically changed the natural history of multiple sclerosis (MS), which was classically associated with severe disability. Treatment strategies advocate that early control of disease activity is crucial to avoid progressive disability, and the use of high efficacy drugs may be beneficial, but safety is a concern. Choosing the disease-modifying therapy is challenging in clinical practice and should be further discussed. Objective: To discuss the state of art of selecting the initial therapy for relapsing MS patients. Methods: We used a case-based approach followed by clinical discussion, exploring therapeutic options in different MS settings. Results: We presented clinical cases profile compatible with the use of MS therapies, classified into moderate and high efficacy. In the moderate efficacy group, we discussed interferons, glatiramer acetate, teriflunomide and dimethyl fumarate, while in the high efficacy group we discussed fingolimod, cladribine, natalizumab, ocrelizumab, alemtuzumab and ofatumumab. Conclusion: Advances in MS treatment are remarkable. Strong evidence supports the use of early high efficacy therapy. However, biomarkers, clinical and radiologic prognostic factors, as well as patients' individual issues, should be valued and considered for a personalized treatment decision.
RESUMO
Antecedentes: A imunoterapia mudou drasticamente a história natural da esclerose múltipla (EM), doença esta que era classicamente associada a grandes incapacidades. Sabe-se hoje que o controle precoce da atividade de doença é crucial para evitar incapacidade progressiva, e o uso de terapias de alta eficácia pode ser benéfico. Apesar disso, a segurança ainda é uma preocupação dos pacientes e médicos. A escolha da terapia modificadora da doença é um desafio na prática clínica e suas particularidades devem ser mais discutidas. Objetivo Discutir o estado da arte da seleção da terapia inicial para pacientes com EM remitente recorrente. Métodos Utilizamos uma abordagem baseada em casos clínicos, com discussão das diversas opções terapêuticas em diferentes contextos de EM. Resultados: Foram apresentados casos clínicos compatíveis com o uso das principais terapias para EM, divididas em moderada e alta eficácia. No grupo de moderada eficácia discutimos sobre os interferons, acetato de glatirâmer, teriflunomida e fumarato de dimetila enquanto que no de alta eficácia falamos sobre fingolimode, cladribina, natalizumabe, ocrelizumabe, alentuzumabe e ofatumumabe. Conclusão Os avanços no tratamento da EM são notáveis. Fortes evidências suportam que o uso de terapia de alta eficácia de forma precoce possa ser benéfica. No entanto, biomarcadores, fatores prognósticos clínicos e radiológicos, bem como questões individuais dos pacientes, devem ser valorizados e considerados para uma decisão de tratamento personalizado.
Authors’ contributions:
SLPA: Substantial contributions to the study design and development, writing of the article, and critical revision; MB, LT, NTM, IC: Substantial contributions to the data collection , writing of the article and critical revision.
Publication History
Received: 23 March 2022
Accepted: 29 April 2022
Article published online:
06 February 2023
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17 (02) P162-P173 https://doi.org/10.1016/S1474-4422(17)30470-2
- 2 Kappos L, Wolinsky JS, Giovannoni G, Arnold DL, Wang Q, Bernasconi C. et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol 2020; 77 (09) 1132-1140 https://doi.org/10.1001/jamaneurol.2020.1568
- 3 Smyrke N, Dunn N, Murley C, Mason D. Standardized mortality ratios in multiple sclerosis: systematic review with meta-analysis. Acta Neurol Scand 2022; 145 (03) 360-370 https://doi.org/10.1111/ane.13559
- 4 Chen J, Taylor BV, Blizzard L, Simpson Jr S, Palmer AJ, van der Mei IAF. Effects of multiple sclerosis disease-modifying therapies on employment measures using patient-reported data. J Neurol Neurosurg Psychiatry 2018; 89 (11) 1200-1207 https://doi.org/10.1136/jnnp-2018-318228
- 5 Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ. et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 2014; 83 (03) 278-286 https://doi.org/10.1212/WNL.2022s1282022s1280560
- 6 Wiendl H, Gold R, Berger T, Derfuss T, Linker R, Mäurer M. et al. Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper). Ther Adv Neurol Disord. 2021 Aug 18;14:17562864211039648 https://doi.org/10.1177/17562864211039648
- 7 Ontaneda D, Tallantyre E, Kalincik T, Planchon SM, Evangelou N. Early highly effective versus escalation treatment approaches in relapsing multiple sclerosis. Lancet Neurol 2019; 18 (10) P973-P980 https://doi.org/10.1016/S1474-4422(19)30151-6
- 8 Cerqueira JJ, Compston DAS, Geraldes R, Rosa MM, Schmierer K, Thompson A. et al. Time matters in multiple sclerosis: can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis?. J Neurol Neurosurg Psychiatry 2018; 89 (08) 844-850 https://doi.org/10.1136/jnnp-2017-317509
- 9 Giovannoni G, Turner B, Gnanapavan S, Offiah C, Schmierer K, Marta M. Is it time to target no evident disease activity (NEDA) in multiple sclerosis?. Mult Scler Relat Disord 2015; 4 (04) P329-P333 https://doi.org/10.1016/j.msard.2015.04.006
- 10 Apóstolos-Pereira SL, Silva GD, Disserol CCD, Feo LB, Matos AMB, Schoeps VA. et al. Management of central nervous system demyelinating diseases during the coronavirus disease 2019 pandemic: a practical approach. Arq Neuropsiquiatr 2020; 78 (07) 430-439 https://doi.org/10.1590/0004-282X20200056
- 11 Ministério da Saúde. Portaria conjunta nº 1, de 7 de janeiro de 2022. Aprova o Protocolo Clínico e Diretrizes Terapêuticas da Esclerose Múltipla. Brasília (DF): Secretaria de Atenção Especializada à Saúde; 2022 2022 Mar 9 Available from: https://bvsms.saude.gov.br/bvs/saudelegis/saes/2022/poc0001_31_01_2022.html
- 12 Samjoo IA, Worthington E, Drudge C, Zhao M, Cameron C, Häring DA. et al. Efficacy classification of modern therapies in multiple sclerosis. J Comp Eff Res 2021; 10 (06) 495-507 https://doi.org/10.2217/cer-2020-0267
- 13 Scolding N, Barnes D, Cader S, Chataway J, Chaudhuri A, Coles A. et al. Association of British Neurologists: revised (2015) guidelines for prescribing disease-modifying treatments in multiple sclerosis. Pract Neurol 2015; 15 (04) 273-279 https://doi.org/10.1136/practneurol-2015-001139
- 14 Filippi M, Danesi R, Derfuss T, Duddy M, Gallo P, Gold R. et al. Early and unrestricted access to high-efficacy disease-modifying therapies: a consensus to optimize benefits for people living with multiple sclerosis. J Neurol 2022; 269 (03) 1670-1677 https://doi.org/10.1007/s00415-021-10836-8
- 15 Makhani N, Tremlett H. The multiple sclerosis prodrome. Nat Rev Neurol 2021; 17 (08) 515-521 https://doi.org/10.1038/s41582-021-00519-3
- 16 U.S. Food & Drug Administration [[Internet]]. Avonex (interferon beta-1a) injection, for intramuscular injection initial U.S. Approval: 1996 . [cited 2022 Mar 9]. 24 p. Available from: https://www.avonex.com/content/dam/commercial/avonex/pat/en_us/pdf/Avonex_US_Prescribing_Information.pdf
- 17 Dhib-Jalbut S, Marks S. Interferon-β mechanisms of action in multiple sclerosis. Neurology 2010; Jan 5;74(1 Suppl 1): 74 https://doi.org/10.1212/WNL.0b013e3181c97d99
- 18 Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J. et al. Pegylated interferon β-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol 2014; 13 (07) P657-P665 https://doi.org/10.1016/S1474-4422(14)70068-7
- 19 Ebers GC. Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. Lancet 1998; 352 9139 1498-1504 https://doi.org/10.1016/S0140-6736(98)03334-0
- 20 IFNB Multiple Sclerosis Study Group. Interferon beta-lb is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. 1993; [classical article]. Neurology 2001 Dec;57(12 Suppl 5): S3-S9
- 21 Paty DW, Li DK. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology 1993; 43 (04) 662-667 https://doi.org/10.1212/WNL.43.4.662
- 22 Luna G, Alping P, Burman J, Fink K, Fogdell-Hahn A, Gunnarsson M. et al. Infection risks among patients with multiple sclerosis treated with fingolimod, natalizumab, rituximab, and injectable therapies. JAMA Neurol 2020; 77 (02) 184-191 https://doi.org/10.1001/jamaneurol.2019.3365
- 23 Arnon R, Aharoni R. Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci U S A 2004; Oct 5;101(2 Suppl 2) 14593-14598 https://doi.org/10.1073/pnas.0404887101
- 24 Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 1995; 45 (07) 1268-1276 https://doi.org/10.1212/WNL.45.7.1268
- 25 Khan O, Rieckmann P, Boyko A, Selmaj K, Zivadinov R. GALA Study Group. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol 2013; 73 (06) 705-713 https://doi.org/10.1002/ana.23938
- 26 Subramaniam K, Pavli P, Llewellyn H, Chitturi S. Glatiramer acetate induced hepatotoxicity. Curr Drug Saf 2012; 7 (02) 186-188 https://doi.org/10.2174/157488612802715690
- 27 Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 2014; 74 (06) 659-674 https://doi.org/10.1007/s40265-014-0212-x
- 28 O'Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP. et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 2011; 365 (14) 1293-1303 https://doi.org/10.1056/NEJMoa1014656
- 29 Confavreux C, O'Connor P, Comi G, Freedman MS, Miller AE, Olsson TP. et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 2014; 13 (03) P247-P256 https://doi.org/10.1016/S1474-4422(13)70308-9
- 30 Comi G, Freedman MS, Kappos L, Olsson TP, Miller AE, Wolinsky JS. et al. Pooled safety and tolerability data from four placebo-controlled teriflunomide studies and extensions. Mult Scler Relat Disord 2016; 5: P97-104 https://doi.org/10.1016/j.msard.2015.11.006
- 31 U.S. Food & Drug Administration [Internet]. Aubagio (teriflunomide) tablets, for oral use Initial U.S. Approval: 2012. 28. 2022 Mar 9 Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/202992s006lbl.pdf
- 32 Nature Reviews Neurology [Internet]. Treatment of multiple sclerosis. 2018. 2022 Mar 9 Available from: http://www.nature.com/collections/ms-milestone
- 33 Dello Russo C, Scott KA, Pirmohamed M. Dimethyl fumarate induced lymphopenia in multiple sclerosis: a review of the literature. Pharmacol Ther 2021; 219: 107710 https://doi.org/10.1016/j.pharmthera.2020.107710
- 34 Spencer CM, Crabtree-Hartman EC, Lehmann-Horn K, Cree BA, Zamvil SS. Reduction of CD8(+) T lymphocytes in multiple sclerosis patients treated with dimethyl fumarate. Neurol Neuroimmunol Neuroinflamm 2015; 2 (03) e76 https://doi.org/10.1212/NXI.2022s1282022s1280076
- 35 Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K. et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012; 367 (12) 1098-1107 https://doi.org/10.1056/NEJMoa1114287
- 36 Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M. et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012; 367 (12) 1087-1097 https://doi.org/10.1056/NEJMoa1206328
- 37 Ministério da Saúde. Portaria conjunta nº 1, de 7 de janeiro de 2022. Aprova o Protocolo Clínico e Diretrizes Terapêuticas da Esclerose Múltipla. Brasília (DF): Secretaria de Atenção Especializada à Saúde; 2022 2022 Mar 9 Available from: https://bvsms.saude.gov.br/bvs/saudelegis/saes/2022/poc0001_31_01_2022.html
- 38 Gold R, Arnold DL, Bar-Or A, Fox RJ, Kappos L, Chen C. et al. Safety and efficacy of delayed-release dimethyl fumarate in patients with relapsing-remitting multiple sclerosis: 9 years' follow-up of DEFINE, CONFIRM, and ENDORSE. Ther Adv Neurol Disord. 2020 May 12;13:1756286420915005 https://doi.org/10.1177/1756286420915005
- 39 Rodríguez-Regal A, Ramos-Rúa L, Anibarro-García L, Lopez Real AM, Amigo-Jorrín MDC. Effectiveness of dimethyl fumarate in real-world clinical practice and strategy to minimize adverse effects and use of healthcare resources. Patient Prefer Adherence 2021; 15: 149-158 https://doi.org/10.2147/PPA.S284425
- 40 Jordan AL, Yang J, Fisher CJ, Racke MK, Mao-Draayer Y. Progressive multifocal leukoencephalopathy in dimethyl fumarate-treated multiple sclerosis patients. Mult Scler 2022; 28 (01) 7-15 https://doi.org/10.1177/1352458520949158
- 41 Lanzillo R, Moccia M, Palladino R, Signoriello E, Carotenuto A, Maniscalco GT. et al. Clinical predictors of Dimethyl Fumarate response in multiple sclerosis: a real life multicentre study. Mult Scler Relat Disord 2020; 38: 101871 https://doi.org/10.1016/j.msard.2019.101871
- 42 Kappos L, Radue EW, O'Connor P, Polman C, Hohlfeld R, Calabresi P. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 2010; 362 (05) 387-401 https://doi.org/10.1056/NEJMoa0909494
- 43 Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 2010; 362 (05) 402-415 https://doi.org/10.1056/NEJMoa0907839
- 44 Akbulak RÖ, Rosenkranz SC, Schaeffer BN, Pinnschmidt HO, Willems S, Heesen C. et al. Acute and long-term effects of fingolimod on heart rhythm and heart rate variability in patients with multiple sclerosis. Mult Scler Relat Disord 2018; 19: 44-49 https://doi.org/10.1016/j.msard.2017.10.020
- 45 Jain N, Bhatti MT. Fingolimod-associated macular edema: incidence, detection, and management. Neurology 2012; 78 (09) 672-680 https://doi.org/10.1212/WNL.0b013e318248deea
- 46 Cohen JA, Khatri B, Barkhof F, Comi G, Hartung HP, Montalban X. et al. Long-term (up to 4.5 years) treatment with fingolimod in multiple sclerosis: results from the extension of the randomised TRANSFORMS study. J Neurol Neurosurg Psychiatry 2016; 87 (05) 468-475 https://doi.org/10.1136/jnnp-2015-310597
- 47 U.S. Food & Drug Administration [Internet]. Gilenya label - Highlights of prescribing information. [cited 2022 Mar 9]. 28 p. Available: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022527s024lbl.pdf
- 48 Beutler E. Cladribine (2-chlorodeoxyadenosine). Lancet 1992; 340 8825 952-956 https://doi.org/10.1016/0140-6736(92)92826-2
- 49 Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Sørensen PS. et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med 2010; 362 (05) 416-426 https://doi.org/10.1056/NEJMoa0902533
- 50 Giovannoni G, Sorensen PS, Cook S, Rammohan K, Rieckmann P, Comi G. et al. Safety and efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis: Results from the randomized extension trial of the CLARITY study. Mult Scler 2018; 24 (12) 1594-1604 https://doi.org/10.1177/1352458517727603
- 51 Polman CH, O'Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2006; 354 (09) 899-910 https://doi.org/10.1056/NEJMoa044397
- 52 Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue EW. et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 2006; 354 (09) 911-923 https://doi.org/10.1056/NEJMoa044396
- 53 Butzkueven H, Licata S, Jeffery D, Arnold DL, Filippi M, Geurts JJ. et al. Natalizumab versus fingolimod for patients with active relapsing-remitting multiple sclerosis: results from REVEAL, a prospective, randomised head-to-head study. BMJ Open 2020; 10 (10) e038861 https://doi.org/10.1136/bmjopen-2020-038861
- 54 Fernández O. Best practice in the use of natalizumab in multiple sclerosis. Ther Adv Neurol Disord 2013; 6 (02) 69-79 https://doi.org/10.1177/1756285612470401
- 55 Comi G, Costa GD, Moiola L. Newly approved agents for relapsing remitting multiple sclerosis: how real-world evidence compares with randomized clinical trials?. Expert Rev Neurother 2021; 21 (01) 21-34 https://doi.org/10.1080/14737175.2021.1829478
- 56 Wiendl H, Carraro M, Comi G, Izquierdo G, Kim HJ, Sharrack B. et al. Lymphocyte pharmacodynamics are not associated with autoimmunity or efficacy after alemtuzumab. Neurol Neuroimmunol Neuroinflamm 2019; 7 (01) e635 https://doi.org/10.1212/NXI.2022s1282022s1280635
- 57 Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP. et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 2012; 380 9856 1819-1828 https://doi.org/10.1016/S0140-6736(12)61769-3
- 58 Havrdova E, Arnold DL, Cohen JA, Hartung HP, Fox EJ, Giovannoni G. et al. Alemtuzumab CARE-MS I 5-year follow-up: durable efficacy in the absence of continuous MS therapy. Neurology 2017; 89 (11) 1107-1116 https://doi.org/10.1212/WNL.2022s1282022s1284313
- 59 Berger T, Elovaara I, Fredrikson S, McGuigan C, Moiola L, Myhr KM. et al. Alemtuzumab use in clinical practice: recommendations from european multiple sclerosis experts. CNS Drugs 2017; 31 (01) 33-50 https://doi.org/10.1007/s40263-016-0394-8
- 60 Baker D, Herrod SS, Alvarez-Gonzalez C, Giovannoni G, Schmierer K. Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab. JAMA Neurol 2017; 74 (08) 961-969 https://doi.org/10.1001/jamaneurol.2017.0676
- 61 Cleveland Clinic [Internet]. Mellen center approach: lemtrada (alemtuzumab). [cited 2022 Mar 9]. 5 p. Available from: https://my.clevelandclinic.org/-/scassets/files/org/neurological/multiple-sclerosis/16-neu-627-alemtuzumab.ashx?la=en
- 62 Lamb YN. Ocrelizumab: a review in multiple sclerosis. Drugs 2022; 82 (03) 323-334 https://doi.org/10.1007/s40265-022-01672-9
- 63 Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B. et al. Ocrelizumab versus Interferon Beta-1a in relapsing multiple sclerosis. N Engl J Med 2017; 376 (03) 221-234 https://doi.org/10.1056/NEJMoa1601277
- 64 Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med 2017; 376 (03) 209-220 https://doi.org/10.1056/NEJMoa1606468
- 65 Kang C, Blair HA. Ofatumumab: a review in relapsing forms of multiple sclerosis. Drugs 2022; 82 (01) 55-62 https://doi.org/10.1007/s40265-021-01650-7
- 66 Hauser SL, Bar-Or A, Cohen JA, Comi G, Correale J, Coyle PK. et al. Ofatumumab versus Teriflunomide in Multiple Sclerosis. N Engl J Med 2020; 383 (06) 546-557 https://doi.org/10.1056/NEJMoa1917246
- 67 Filippini G, Del Giovane C, Clerico M, Beiki O, Mattoscio M, Piazza F. et al. Treatment with disease-modifying drugs for people with a first clinical attack suggestive of multiple sclerosis. Cochrane Database Syst Rev 2017; 4 (04) CD012200 https://doi.org/10.1002/14651858.CD012200.pub2
- 68 Rotstein D, Montalban X. Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis. Nat Rev Neurol 2019; 15 (05) 287-300 https://doi.org/10.1038/s41582-019-0170-8
- 69 Tintore M, Rovira À, Río J, Otero-Romero S, Arrambide G, Tur C. et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain 2015; 138 (07) 1863-1874 https://doi.org/10.1093/brain/awv105
- 70 Chitnis T, Arnold DL, Banwell B, Brück W, Ghezzi A, Giovannoni G. et al. Trial of fingolimod versus interferon Beta-1a in pediatric multiple sclerosis. N Engl J Med 2018; 379 (11) 1017-1027 https://doi.org/10.1056/NEJMoa1800149
- 71 Giovannoni G, Popescu V, Wuerfel J, Hellwig K, Iacobaeus E, Jensen MB. et al. Smouldering multiple sclerosis: the 'real MS'. Ther Adv Neurol Disord. 2022 Jan 25;15:17562864211066751 https://doi.org/10.1177/17562864211066751
- 72 Mititelu RR, Albu CV, Bacanoiu MV, Padureanu V, Padureanu R, Olaru G. et al. Homocysteine as a predictor tool in multiple sclerosis. Discoveries (Craiova) 2021; 9 (03) e135 https://doi.org/10.15190/d.2021.14
- 73 Nazeri M, Bazrafshan H, Abolhasani Foroughi A. Serum inflammatory markers in patients with multiple sclerosis and their association with clinical manifestations and MRI findings. Acta Neurol Belg 2021; 2 (04) 2240-2263 https://doi.org/10.1007/s13760-021-01647-9
- 74 Bittner S, Oh J, Havrdová EK, Tintoré M, Zipp F. The potential of serum neurofilament as biomarker for multiple sclerosis. Brain 2021; 144 (10) 2954-2963 https://doi.org/10.1093/brain/awab241
- 75 Tur C, Kalincik T, Oh J, Sormani MP, Tintoré M, Butzkueven H. et al. Head-to-head drug comparisons in multiple sclerosis: Urgent action needed. Neurology 2019; 93 (18) 793-809 https://doi.org/10.1212/WNL.2022s1282022s1288319
- 76 Ontaneda D, Tallantyre EC, Raza PC, Planchon SM, Nakamura K, Miller D. et al. Determining the effectiveness of early intensive versus escalation approaches for the treatment of relapsing-remitting multiple sclerosis: the DELIVER-MS study protocol. Contemp Clin Trials 2020; 95: 106009 https://doi.org/10.1016/j.cct.2020.106009
- 77 Simpson A, Mowry EM, Newsome SD. Early aggressive treatment approaches for multiple sclerosis. Curr Treat Options Neurol 2021; 23 (07) 19 https://doi.org/10.1007/s11940-021-00677-1
- 78 Hersh CM, Love TE, Bandyopadhyay A, Cohn S, Hara-Cleaver C, Bermel RA. et al. Comparative efficacy and discontinuation of dimethyl fumarate and fingolimod in clinical practice at 24-month follow-up. Mult Scler J Exp Transl Clin. 2017 Aug 24;3(3):2055217317715485 https://doi.org/10.1177/2055217317715485
- 79 Signori A, Saccà F, Lanzillo R, Maniscalco GT, Signoriello E, Repice AM. et al. Cladribine vs other drugs in MS: merging randomized trial with real-life data. Neurol Neuroimmunol Neuroinflamm 2020; 7 (06) e878 https://doi.org/10.1212/NXI.2022s1282022s1280878
- 80 Buron MD, Chalmer TA, Sellebjerg F, Barzinji I, Christensen JR, Christensen MK. et al. Initial high-efficacy disease-modifying therapy in multiple sclerosis: a nationwide cohort study. Neurology 2020; 95 (08) e1041-e1051 https://doi.org/10.1212/WNL.2022s1280000010135
- 81 Becker J, Ferreira LC, Damasceno A, Bichuetti DB, Christo PP, Callegaro D. et al. Recommendations by the Scientific Department of Neuroimmunology of the Brazilian Academy of Neurology (DCNI/ABN) and the Brazilian Committee for Treatment and Research in Multiple Sclerosis and Neuroimmunological Diseases (BCTRIMS) on vaccination in general and specifically against SARS-CoV-2 for patients with demyelinating diseases of the central nervous system. Arq Neuropsiquiatr 2021; 79 (11) 1049-1061 https://doi.org/10.1590/0004-282X-ANP-2021-0162