Subscribe to RSS
DOI: 10.1590/0004-282X-ANP-2022-S133
Deep brain stimulation in Parkinson’s disease: state of the art and future perspectives
Estimulação cerebral profunda na doença de Parkinson: estado da arte e perspectivas futurasABSTRACT
For more than 30 years, Deep Brain Stimulation (DBS) has been a therapeutic option for Parkinson’s disease (PD) treatment. However, this therapy is still underutilized mainly due to misinformation regarding risks and clinical outcomes. DBS can ameliorate several motor and non-motor symptoms, improving patients’ quality of life. Furthermore, most of the improvement after DBS is long-lasting and present even in advanced PD. Adequate patient selection, precise electric leads placement, and correct DBS programming are paramount for good surgical outcomes. Nonetheless, DBS still has many limitations: axial symptoms and signs, such as speech, balance and gait, do not improve to the same extent as appendicular symptoms and can even be worsened as a direct or indirect consequence of surgery and stimulation. In addition, there are still unanswered questions regarding patient’s selection, surgical planning and programming techniques, such as the role of surgicogenomics, more precise imaging-based lead placement, new brain targets, advanced programming strategies and hardware features. The net effect of these innovations should not only be to refine the beneficial effect we currently observe on selected symptoms and signs but also to improve treatment resistant facets of PD, such as axial and non-motor features. In this review, we discuss the current state of the art regarding DBS selection, implant, and programming, and explore new advances in the DBS field.
RESUMO
Há mais de 30 anos, a Estimulação Cerebral Profunda (ECP) é uma opção de tratamento para pessoas com doença de Parkinson (DP). Apesar disso, a ECP ainda é subutilizada, em grande parte por desinformação acerca dos riscos e dos benefícios desse tratamento. A ECP melhora os sintomas motores e não motores da DP, melhorando, assim, a qualidade de vida dos pacientes. Grande parte dos benefícios gerados pela ECP têm longa duração, estando presentes até mesmo em fases avançadas da doença. A seleção adequada dos pacientes, o preciso posicionamento dos eletrodos cerebrais, e a programação correta da ECP são fundamentais para que haja benefício após a cirurgia. Todavia, existem ainda muitas limitações em relação ao tratamento com ECP. Sintomas axiais, como fala e marcha, não melhoram tanto quanto os sintomas apendiculares, e podem até mesmo piorar após a cirurgia. Existem muitas dúvidas relacionadas à seleção de pacientes, especialmente nos aspectos de imagem e genética. Em relação à questão cirúrgica, novas técnicas de imagem podem auxiliar o posicionamento correto dos eletrodos cerebrais. Novas estratégias de programação e avanços de hardware podem melhorar desfechos que ainda são limitados. A fim de melhorar sintomas resistentes à ECP, como cognição e marcha, novos alvos cerebrais estão sendo explorados. Na presente revisão, discutimos o atual estado da arte relacionado à ECP, abordando seleção de pacientes, implante cirúrgico de eletrodos, e programação do dispositivo, além de explorarmos novos avanços em desenvolvimento.
Palavras-chave:
Doença de Parkinson - Estimulação Encefálica Profunda - Estimulação Elétrica Nervosa TranscutâneaAuthor contributions:
CF, JMD, RBC, RGC: contributed to literature review, manuscript preparation and writing; CF, RPM, RGC: contributed to manuscript review.
Publication History
Received: 31 March 2022
Accepted: 29 April 2022
Article published online:
06 February 2023
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Limousin P, Foltynie T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev Neurol 2019; 15 (04) 234-242 https://doi.org/10.1038/s41582-019-0145-9
- 2 Lange M, Mauerer J, Schlaier J, Janzen A, Zeman F, Bogdahn U. et al. Underutilization of deep brain stimulation for Parkinson’s disease? A survey on possible clinical reasons. Acta Neurochir (Wien) 2017; 159 (05) 771-778 https://doi.org/10.1007/s00701-017-3122-3
- 3 Barbosa ER, Cury RG. Tailoring the deep brain stimulation indications in Parkinson’s disease. Arq Neuropsiquiatr 2018; 76 (06) 359-360 https://doi.org/10.1590/0004-282X20180046
- 4 Adler CH, Beach TG, Hentz JG, Shill HA, Caviness JN, Driver-Dunckley E. et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study. Neurology 2014; 83 (05) 406-412 https://doi.org/10.1212/WNL.2022s1332022s1330641
- 5 Schuepbach WMM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L. et al. Neurostimulation for Parkinson's disease with early motor complications. N Engl J Med 2013; 368 (07) 610-622 https://doi.org/10.1056/NEJMoa1205158
- 6 Hariz M. There is no credible rational for deep brain stimulation in very early Parkinson's disease!. Parkinsonism Relat Disord 2015; 21 (03) 345-346 https://doi.org/10.1016/j.parkreldis.2014.10.031
- 7 Meissner WG, Laurencin C, Tranchant C, Witjas T, Viallet F, Guehl D. et al. Outcome of deep brain stimulation in slowly progressive multiple system atrophy: a clinico-pathological series and review of the literature. Parkinsonism Relat Disord 2016; 24: P69-P75 https://doi.org/10.1016/j.parkreldis.2016.01.005
- 8 Saranza G, Lang AE. Levodopa challenge test: indications, protocol, and guide. J Neurol 2021; 268 (09) 3135-3143 https://doi.org/10.1007/s00415-020-09810-7
- 9 Jergas H, Petry-Schmelzer JN, Dembek TA, Dafsari HS, Visser-Vandewalle V, Fink GR. et al. Brain morphometry associated with response to levodopa and deep brain stimulation in Parkinson disease. Neuromodulation 2022; S1094-7159 (22) 00034-00034
- 10 Lachenmayer ML, Mürset M, Antih N, Debove I, Muellner J, Bompart M. et al. Subthalamic and pallidal deep brain stimulation for Parkinson’s disease-meta-analysis of outcomes. NPJ Parkinsons Dis 2021; 7 (01) 77-77 https://doi.org/10.1038/s41531-021-00223-5
- 11 Bove F, Mulas D, Cavallieri F, Castrioto A, Chabardès S, Meoni S. et al. Long-term outcomes (15 years) after subthalamic nucleus deep brain stimulation in patients with Parkinson disease. Neurology 2021; 97 (03) e254-e262 https://doi.org/10.1212/WNL.2022s1330000012246
- 12 Zibetti M, Merola A, Rizzi L, Ricchi V, Angrisano S, Azzaro C. et al. Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease: 9 Years of STN-DBS in PD. Mov Disord 2011; 26 (13) 2327-2334 https://doi.org/10.1002/mds.23903
- 13 Cury RG, Galhardoni R, Fonoff ET, Ghilardi MGS, Fonoff F, Arnaut D. et al. Effects of deep brain stimulation on pain and other nonmotor symptoms in Parkinson disease. Neurology 2014; 83 (16) 1403-1409 https://doi.org/10.1212/WNL.2022s1332022s1330887
- 14 Bove F, Fraix V, Cavallieri F, Schmitt E, Lhommée E, Bichon A. et al. Dementia and subthalamic deep brain stimulation in Parkinson disease: a long-term overview. Neurology 2020; 95 (04) e384-e392 https://doi.org/10.1212/WNL.2022s1332022s1339822
- 15 Munhoz RP, Cerasa A, Okun MS. Surgical treatment of dyskinesia in Parkinson's disease. Front Neurol 2014; 5: 65-65 https://doi.org/10.3389/fneur.2014.00065
- 16 Southwell DG, Rutkowski MJ, San Luciano M, Racine C, Ostrem J, Starr PA. et al. Before and after the veterans affairs cooperative program 468 study: deep brain stimulator target selection for treatment of Parkinson’s disease. Parkinsonism Relat Disord 2018; 48: P40-P44 https://doi.org/10.1016/j.parkreldis.2017.12.013
- 17 Odekerken VJJ, Boel JA, Geurtsen GJ, Schmand BA, Dekker IP, Haan RJ. et al. Neuropsychological outcome after deep brain stimulation for Parkinson disease. Neurology 2015; 84 (13) 1355-1361 https://doi.org/10.1212/WNL.2022s1332022s1331419
- 18 Cavallieri F, Fraix V, Bove F, Mulas D, Tondelli M, Castrioto A. et al. Predictors of long‐term outcome of subthalamic stimulation in Parkinson disease. Ann Neurol 2021; 89 (03) 587-597 https://doi.org/10.1002/ana.25994
- 19 Fukaya C, Watanabe M, Kobayashi K, Oshima H, Yoshino A, Yamamoto T. Predictive factors for long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson’s disease. Neurol Med Chir (Tokyo) 2017; 57 (04) 166-171 https://doi.org/10.2176/nmc.oa.2016-0114
- 20 Schuepbach WMM, Tonder L, Schnitzler A, Krack P, Rau J, Hartmann A. et al. Quality of life predicts outcome of deep brain stimulation in early Parkinson disease. Neurology 2019; 92 (10) e1109-e1120 https://doi.org/10.1212/WNL.2022s1332022s1337037
- 21 Tripoliti E, Limousin P, Foltynie T, Candelario J, Aviles-Olmos I, Hariz MI. et al. Predictive factors of speech intelligibility following subthalamic nucleus stimulation in consecutive patients with Parkinson's disease. Mov Disord 2014; 29 (04) 532-538 https://doi.org/10.1002/mds.25816
- 22 Petry-Schmelzer JN, Krause M, Dembek TA, Horn A, Evans J, Ashkan K. et al. Non-motor outcomes depend on location of neurostimulation in Parkinson's disease. Brain 2019; 142 (11) 3592-3604 https://doi.org/10.1093/brain/awz285
- 23 Kramme J, Dembek TA, Treuer H, Dafsari HS, Barbe MT, Wirths J. et al. Potentials and limitations of directional deep brain stimulation: a simulation approach. Stereotact Funct Neurosurg 2021; 99 (01) 65-74 https://doi.org/10.1159/000509781
- 24 Vitek JL, Jain R, Chen L, Tröster AI, Schrock LE, House PA. et al. Subthalamic nucleus deep brain stimulation with a multiple independent constant current-controlled device in Parkinson’s disease (INTREPID): a multicentre, double-blind, randomised, sham-controlled study. Lancet Neurol 2020; 19 (06) P491-P501 https://doi.org/10.1016/S1474-4422(20)30108-3
- 25 Neumann W-J, Staub-Bartelt F, Horn A, Schanda J, Schneider G-H, Brown P. et al. Long term correlation of subthalamic beta band activity with motor impairment in patients with Parkinson's disease. Clin Neurophysiol 2017; 128 (11) 2286-2291 https://doi.org/10.1016/j.clinph.2017.08.028
- 26 Neumann W-J, Degen K, Schneider G-H, Brücke C, Huebl J, Brown P. et al. Subthalamic synchronized oscillatory activity correlates with motor impairment in patients with Parkinson's disease. Mov Disord 2016; 31 (11) 1748-1751 https://doi.org/10.1002/mds.26759
- 27 Swann NC, Hemptinne C, Miocinovic S, Qasim S, Wang SS, Ziman N. et al. Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson's disease. J Neurosci 2016; 36 (24) 6445-6458 https://doi.org/10.1523/JNEUROSCI.1128-16.2016
- 28 Velisar A, Syrkin-Nikolau J, Blumenfeld Z, Trager MH, Afzal MF, Prabhakar V. et al. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimulation 2019; 12 (04) 868-876 https://doi.org/10.1016/j.brs.2019.02.020
- 29 Picillo M, Lozano AM, Kou N, Munhoz RP, Fasano A. Programming deep brain stimulation for Parkinson's disease: the Toronto Western Hospital Algorithms. Brain Stimul 2016; 9 (03) 425-437 https://doi.org/10.1016/j.brs.2016.02.004
- 30 França C, Barbosa ER, Iglesio R, Teixeira MJ, Cury RG. Interleaving stimulation in Parkinson disease: interesting to whom?. World Neurosurg 2019; 130: e786-e793 https://doi.org/10.1016/j.wneu.2019.06.223
- 31 Zibetti M, Moro E, Krishna V, Sammartino F, Picillo M, Munhoz RP. et al. Low-frequency subthalamic stimulation in Parkinson's disease: long-term outcome and predictors. Brain Stimul 2016; 9 (05) 774-779 https://doi.org/10.1016/j.brs.2016.04.017
- 32 Karl JA, Ouyang B, Metman LV. A novel dual-frequency deep brain stimulation paradigm for Parkinson's disease. Neurol Ther 2019; 8 (02) 483-489 https://doi.org/10.1007/s40120-019-0140-5
- 33 Dayal V, Grover T, Limousin P, Akram H, Cappon D, Candelario J. et al. The effect of short pulse width settings on the therapeutic window in subthalamic nucleus deep brain stimulation for Parkinson's disease. J Parkinsons Dis 2018; 8 (02) 273-279 https://doi.org/10.3233/JPD-171272
- 34 Guimarães TG, Cury RG. Troubleshooting gait problems in Parkinson's disease patients with subthalamic nucleus deep brain stimulation. J Parkinsons Dis 2022; 12 (02) 737-741 https://doi.org/10.3233/JPD-212771
- 35 Gonzalez-Escamilla G, Koirala N, Bange M, Glaser M, Pintea B, Dresel C. et al. Deciphering the network effects of deep brain stimulation in Parkinson's disease. Neurol Ther 2022; 11 (01) 265-282 https://doi.org/10.1007/s40120-021-00318-4
- 36 Lee EJ, Oh JS, Moon H, Kim M-J, Kim MS, Chung SJ. et al. Parkinson disease-related pattern of glucose metabolism associated with the potential for motor improvement after deep brain stimulation. Neurosurg 2020; 86 (04) 492-499 https://doi.org/10.1093/neuros/nyz206
- 37 Oliveira LM, Barbosa ER, Aquino CC, Munhoz RP, Fasano A, Cury RG. Deep brain stimulation in patients with mutations in Parkinson's disease-related genes: a systematic review. Mov Disord Clin Pract 2019; 6 (05) 359-368 https://doi.org/10.1002/mdc3.12795
- 38 Merola A, Singh J, Reeves K, Changizi B, Goetz S, Rossi L. et al. New frontiers for deep brain stimulation: directionality, sensing technologies, remote programming, robotic stereotactic assistance, asleep procedures, and connectomics. Front Neurol 2021; 12: 694747 https://doi.org/10.3389/fneur.2021.694747
- 39 Zrinzo L. Pitfalls in precision stereotactic surgery. Surg Neurol Int 2012; Jan 14;3(2 Suppl 1): S53-S61 https://doi.org/10.4103/2152-7806.91612
- 40 van Laar PJ, Oterdoom DLM, Ter Horst GJ, van Hulzen ALJ, Graaf EKL, Hoogduin H. et al. Surgical accuracy of 3-Tesla versus 7-Tesla magnetic resonance imaging in deep brain stimulation for Parkinson disease. World Neurosurg 2016; 93: 410-412 https://doi.org/10.1016/j.wneu.2016.06.084
- 41 Duchin Y, Abosch A, Yacoub E, Sapiro G, Harel N. Feasibility of using ultra-high field (7 T) MRI for clinical surgical targeting. PLoS One 2012; 7 (05) e37328 https://doi.org/10.1371/journal.pone.0037328
- 42 Isaacs BR, Heijmans M, Kuijf ML, Kubben PL, Ackermans L, Temel Y. et al. Variability in subthalamic nucleus targeting for deep brain stimulation with 3 and 7 Tesla magnetic resonance imaging. Neuro Clin 2021; 32: 102829 https://doi.org/10.1016/j.nicl.2021.102829
- 43 Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW. et al. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol 2021; 17 (02) 75-87 https://doi.org/10.1038/s41582-020-00426-z
- 44 Boutet A, Gramer R, Steele CJ, Elias GJB, Germann J, Maciel R. et al. Neuroimaging technological advancements for targeting in functional neurosurgery. Curr Neurol Neurosci Rep 2019; 19 (07) 42 https://doi.org/10.1007/s11910-019-0961-8
- 45 Forstmann BU, Isaacs BR, Temel Y. Ultra high field MRI-Guided deep brain stimulation. Trends Biotechnol 2017; 35 (10) 904-907 https://doi.org/10.1016/j.tibtech.2017.06.010
- 46 Bhusal B, Stockmann J, Guerin B, Mareyam A, Kirsch J, Wald LL. et al. Safety and image quality at 7T MRI for deep brain stimulation systems: Ex vivo study with lead-only and full-systems. PLoS One 2021; 16 (09) e0257077 https://doi.org/10.1371/journal.pone.0257077
- 47 Kanowski M, Voges J, Buentjen L, Stadler J, Heinze H-J, Tempelmann C. Direct visualization of anatomic subfields within the superior aspect of the human lateral thalamus by MRI at 7T. AJNR Am J Neuroradiol 2014; 35 (09) 1721-1727 https://doi.org/10.3174/ajnr.A3951
- 48 Chandran AS, Bynevelt M, Lind CRP. Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation. J Neurosurg 2016; 124 (01) 96-105 https://doi.org/10.3171/2015.1.JNS142066
- 49 O'Gorman RL, Shmueli K, Ashkan K, Samuel M, Lythgoe DJ, Shahidiani A. et al. Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol 2011; 21 (01) 130-136 https://doi.org/10.1007/s00330-010-1885-5
- 50 Rasouli J, Ramdhani R, Panov FE, Dimov A, Zhang Y, Cho C. et al. Utilization of Quantitative Susceptibility Mapping for Direct Targeting of the Subthalamic Nucleus During Deep Brain Stimulation Surgery. Oper Neurosurg (Hagerstown) 2018; 14 (04) 412-419 https://doi.org/10.1093/ons/opx131
- 51 Diniz JM, Cury RG, Iglesio RF, Lepski GA, França CC, Barbosa ER. et al. Dentate nucleus deep brain stimulation: technical note of a novel methodology assisted by tractography. Surg Neurol Int 2021; 12: 400 https://doi.org/10.25259/SNI_338_2021
- 52 Wong JK, Hu W, Barmore R, Lopes J, Moore K, Legacy J. et al. Safety and tolerability of burst-cycling deep brain stimulation for freezing of gait in Parkinson's disease. Front Hum Neurosci 2021; 15: 651168 https://doi.org/10.3389/fnhum.2021.651168
- 53 Juárez-Paz LM. In silico accuracy and energy efficiency of two steering paradigms in directional deep brain stimulation. Front Neurol 2020; 11: 593798 https://doi.org/10.3389/fneur.2020.593798
- 54 Frey J, Cagle J, Johnson KA, Wong JK, Hilliard JD, Butson CR. et al. Past, present, and future of deep brain stimulation: hardware, software, imaging, physiology and novel approaches. Front Neurol 2022; 13: 825178 https://doi.org/10.3389/fneur.2022.825178
- 55 Kirsch AD, Hassin-Baer S, Matthies C, Volkmann J, Steigerwald F. Anodic versus cathodic neurostimulation of the subthalamic nucleus: a randomized-controlled study of acute clinical effects. Parkinsonism Relat Disord 2018; 55: P61-P67 https://doi.org/10.1016/j.parkreldis.2018.05.015
- 56 Petry-Schmelzer JN, Schwarz LM, Jergas H, Reker P, Steffen JK, Dafsari HS. et al. A randomized crossover trial of short versus conventional pulse width DBS in Parkinson’s Disease. Neurology [Preeprint] 2021; 1-24 https://doi.org/10.1101/2021.06.20.21258955
- 57 Heldman DA, Pulliam CL, Mendoza EU, Gartner M, Giuffrida JP, Montgomery Jr EB. et al. Computer-guided deep brain stimulation programming for Parkinson's disease. Neuromodulation 2016; 19 (02) P127-P132 https://doi.org/10.1111/ner.12372
- 58 Feldmann LK, Neumann W-J, Krause P, Lofredi R, Schneider G-H, Kühn AA. Subthalamic beta band suppression reflects effective neuromodulation in chronic recordings. Eur J Neurol 2021; 28 (07) 2372-2377 https://doi.org/10.1111/ene.14801
- 59 Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M. et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 2013; 74 (03) 449-457 https://doi.org/10.1002/ana.23951
- 60 Piña-Fuentes D, van Dijk JMC, van Zijl JC, Moes HR, van Laar T, Oterdoom DLM. et al. Acute effects of adaptive Deep Brain Stimulation in Parkinson's disease. Brain Stimul 2020; 13 (06) 1507-1516 https://doi.org/10.1016/j.brs.2020.07.016
- 61 Rosa M, Arlotti M, Marceglia S, Cogiamanian F, Ardolino G, Fonzo AD. et al. Adaptive deep brain stimulation controls levodopa-induced side effects in Parkinsonian patients. Mov Disord 2017; 32 (04) 628-629 https://doi.org/10.1002/mds.26953
- 62 Swann NC, Hemptinne C, Thompson MC, Miocinovic S, Miller AM, Gilron R. et al. Adaptive deep brain stimulation for Parkinson's disease using motor cortex sensing. J Neural Eng 2018; 15 (04) 046006 https://doi.org/10.1088/1741-2552/aabc9b
- 63 Meoni S, Cury RG, Moro E, Chapter 9 - New players in basal ganglia dysfunction in Parkinson's disease. Björklund A, Cenci MA. Progress in brain research [Internet]. Elsevier; 2020. [cited 2022 Mar 24]. p. 307-27. Available from: https://www.sciencedirect.com/science/article/pii/S0079612320300017
- 64 Heilbronn M, Scholten M, Schlenstedt C, Mancini M, Schöllmann A, Cebi I. et al. Anticipatory postural adjustments are modulated by substantia nigra stimulation in people with Parkinson's disease and freezing of gait. Parkinsonism Relat Disord 2019; 66: 34-39 https://doi.org/10.1016/j.parkreldis.2019.06.023
- 65 Yadav AP, Nicolelis MAL. Electrical stimulation of the dorsal columns of the spinal cord for Parkinson’s disease. Mov Disord 2017; 32 (06) 820-832 https://doi.org/10.1002/mds.27033
- 66 Cai Y, Reddy RD, Varshney V, Chakravarthy KV. Spinal cord stimulation in Parkinson's disease: a review of the preclinical and clinical data and future prospects. Bioelectron Med 2020; 6 (01) 5 https://doi.org/10.1186/s42234-020-00041-9
- 67 Samotus O, Parrent A, Jog M. Spinal Cord stimulation therapy for gait dysfunction in advanced Parkinson's disease patients. Mov Disord 2018; 33 (05) 783-792 https://doi.org/10.1002/mds.27299
- 68 Prasad S, Aguirre-Padilla DH, Poon Y-Y, Kalsi-Ryan S, Lozano AM, Fasano A. Spinal cord stimulation for very advanced Parkinson’s disease: a 1-year prospective trial. Mov Disord 2020; 35 (06) 1082-1083 https://doi.org/10.1002/mds.28065
- 69 Cury RG, Pavese N, Aziz TZ, Krauss JK, Moro E. Neuromodulation of Gait Study Group from Movement Disorders Society. Gaps and roadmap of novel neuromodulation targets for treatment of gait in Parkinson's disease. NPJ Parkinsons Dis 2022; 8 (01) 8 https://doi.org/10.1038/s41531-021-00276-6
- 70 Furusawa Y, Matsui A, Kobayashi-Noami K, Kojima Y, Tsubouchi A, Todoroki D. et al. Burst spinal cord stimulation for pain and motor function in Parkinson’s disease: a case series. Clin Park Relat Disord 2020; 3: 100043 https://doi.org/10.1016/j.prdoa.2020.100043
- 71 Bohnen NI, Yarnall AJ, Weil RS, Moro E, Moehle MS, Borghammer P. et al. Cholinergic system changes in Parkinson’s disease: emerging therapeutic approaches. Lancet Neurol 2022; 21 (04) 381-392 https://doi.org/10.1016/S1474-4422(21)00377-X
- 72 Nazmuddin M, Philippens IHCHM, van Laar T. Electrical stimulation of the nucleus basalis of meynert: a systematic review of preclinical and clinical data. Sci Rep 2021; 11 (01) 11751 https://doi.org/10.1038/s41598-021-91391-0
- 73 Gratwicke J, Zrinzo L, Kahan J, Peters A, Brechany U, McNichol A. et al. Bilateral nucleus basalis of Meynert deep brain stimulation for dementia with Lewy bodies: a randomised clinical trial. Brain Stimul 2020; 13 (04) 1031-1039 https://doi.org/10.1016/j.brs.2020.04.010
- 74 Sharma VD, Safarpour D, Mehta SH, Vanegas-Arroyave N, Weiss D, Cooney JW. et al. Telemedicine and deep brain stimulation - Current practices and recommendations. Parkinsonism Relat Disord 2021; 89: 199-205 https://doi.org/10.1016/j.parkreldis.2021.07.001