Subscribe to RSS
DOI: 10.1590/0004-282X-ANP-2022-S135
Gene therapy in neuromuscular disorders
Terapia gênica nas doenças neuromuscularesAbstract
Monogenic neuromuscular disorders are potentially treatable through gene therapy. Using viral vectors, a therapeutic transgene aims to restore normal levels of a protein not produced by the defective gene, or to silence a gene whose expression leads to toxic effects. Spinal Muscular Atrophy (SMA) is a good example of a monogenic disease that currently has an AAV9-based vector gene therapy as a therapeutic option. In this review, we intend to discuss the viral vectors and their mechanisms of action, in addition to reviewing the clinical trials that supported the approval of gene therapy (AVXS-101) for SMA as well as neuromuscular diseases that are potentially treatable with gene replacement therapy.
Resumo
Doenças neuromusculares monogênicas são potencialmente tratáveis através de terapia gênica. Utilizando-se de vetores virais, um transgene terapêutico objetiva repor os níveis normais de uma proteina não produzida pelo gene defeituoso ou silenciar um gene cuja expressão leva a efeitos tóxicos. A Atrofia Muscular Espinhal (AME) é um bom exemplo de doença monogenica que atualmente tem uma terapia gênica com vetor viral AAV9 como opção terapêutica. Nesta revisão, pretendemos discutir os vetores virais e macanismos de ação utilizados, além de revisar os ensaios clínicos que embasaram a aprovação da terapia gênica (AVXS-101) para AME, assim como doenças neuromusculares potencialmente tratáveis com terapia de reposição gênica.
Keywords:
Genetic Therapy - Dependovirus or Adeno-Associated Virus (AAVs) - Muscular Atrophy, Spinal - Survival of Motor Neuron 1 Protein - Genetic VectorsPalavras-chave:
Terapia Genética - Dependovirus ou Virus Adeno-Associados (AAVs) - Atrofia Muscular Espinal - Proteína 1 de Sobrevivência do Neurônio Motor - Vetores GenéticosAuthors’ contributions:
RHM: responsible for reviewing the literature and drafting the article; RHM, EZ: made critical revision of the article and final approval of the version to be published.
Publication History
Received: 04 April 2022
Accepted: 29 April 2022
Article published online:
06 February 2023
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Abreu NJ, Waldrop MA. Overview of gene therapy in spinal muscular atrophy and Duchenne muscular dystrophy. Pediatr Pulmonol 2021; 56 (04) 710-720 https://doi.org/10.1002/ppul.25055
- 2 Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6 (01) 53 https://doi.org/10.1038/s41392-021-00487-6
- 3 Stevens D, Claborn MK, Gildon BL, Kessler TL, Walker C. Onasemnogene abeparvovec-xioi: gene therapy for spinal muscular atrophy. Ann Pharmacother 2020; 54 (10) 1001-1009 https://doi.org/10.1177/1060028020914274
- 4 Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995; 80 (01) 155-165 https://doi.org/10.1016/0092-8674(95)90460-3
- 5 Joyce PI, Fratta P, Fisher EM, Acevedo-Arozena A. SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments. Mamm Genome 2011; 22 7-8 420-448 https://doi.org/10.1007/s00335-011-9339-1
- 6 Borel F, Gernoux G, Cardozo B, Metterville JP, Cabrera GCT, Song L. et al. Therapeutic rAAVrh10 Mediated SOD1 Silencing in Adult SOD1(G93A) mice and nonhuman primates. Hum Gene Ther 2016; 27 (01) 19-31 https://doi.org/10.1089/hum.2015.122
- 7 Borel F, Gernoux G, Sun H, Stock R, Blackwood M, Brown Jr RH. et al. Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques. Sci Transl Med 2018; 10 465 eaau6414 https://doi.org/10.1126/scitranslmed.aau6414
- 8 Anderson WF. Human gene therapy. Science 1992; 256 5058 808-813 https://doi.org/10.1126/science.1589762
- 9 Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1: 27 https://doi.org/10.4103/2277-9175.98152
- 10 Bouard D, Alazard-Dany D, Cosset F-L. Viral vectors: from virology to transgene expression. Br J Pharmacol 2009; 157 (02) 153-165 https://doi.org/10.1038/bjp.2008.349
- 11 Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6 (01) 53 https://doi.org/10.1038/s41392-021-00487-6
- 12 Lukashev AN, Zamyatnin Jr AA. Viral vectors for gene therapy: current state and clinical perspectives. Biochemistry (Mosc) 2016; 81 (07) 700-708 https://doi.org/10.1134/S0006297916070063
- 13 Crystal RG. Adenovirus: the first effective in vivo gene delivery vector. Hum Gene Ther 2014; 25 (01) 3-11 https://doi.org/10.1089/hum.2013.2527
- 14 Zaiss AK, Liu Q, Bowen GP, Wong NC, Bartlett JS, Muruve DA. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 2002; 76 (09) 4580-4590 https://doi.org/10.1128/jvi.76.9.4580-4590.2002
- 15 Wang D, Gao G. State-of-the-art human gene therapy: part I. Gene delivery technologies. Discov Med 2014; 18 (97) 67-77
- 16 Ayuso E, Mingozzi F, Bosch F. Production, purification and characterization of adeno-associated vectors. Curr Gene Ther 2010; 10 (06) 423-436 https://doi.org/10.2174/156652310793797685
- 17 Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017; 377 (18) 1713-1722 https://doi.org/10.1056/NEJMoa1706198
- 18 Dominguez E, Marais T, Chatauret N, Benkhelifa-Ziyyat S, Duque S, Ravassard P. et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet 2011; 20 (04) 681-693 https://doi.org/10.1093/hmg/ddq514
- 19 Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM. et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 2011; 3 (72) 72ra18 https://doi.org/10.1126/scitranslmed.3001777
- 20 Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J. et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med 2017; 377 (18) 1723-1732 https://doi.org/10.1056/NEJMoa1702752
- 21 Hamilton G, Gillingwater TH. Spinal muscular atrophy: going beyond the motor neuron. Trends Mol Med 2013; 19 (01) P40-P50 https://doi.org/10.1016/j.molmed.2012.11.002
- 22 Hoy SM. Onasemnogene abeparvovec: first global approval. Drugs 2019; 79 (11) 1255-1262 https://doi.org/10.1007/s40265-019-01162-5
- 23 Reed UC, Zanoteli E. Therapeutic advances in 5q-linked spinal muscular atrophy. Arq Neuropsiquiatr 2018; 76 (04) 265-272 https://doi.org/10.1590/0004-282x20180011
- 24 Al-Zaidy SA, Kolb SJ, Lowes L, Alfano LN, Shell R, Church KR. et al. AVXS-101 (onasemnogene abeparvovec) for SMA1: comparative study with a prospective natural history cohort. J Neuromuscul Dis 2019; 6 (03) 307-317 https://doi.org/10.3233/JND-190403
- 25 Finkel RS, McDermott MP, Kaufmann P, Darras BT, Chung WK, Sproule DM. et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 2014; 83 (09) 810-817 https://doi.org/10.1212/WNL.2022s1352022s1350741
- 26 Al-Zaidy SA, Mendell JR. From Clinical Trials to Clinical Practice: Practical Considerations for Gene Replacement Therapy in SMA Type 1. Pediatr Neurol 2019; 100: P3-11 https://doi.org/10.1016/j.pediatrneurol.2019.06.007
- 27 Mendell JR, Al-Zaidy SA, Lehman KJ, McColly M, Lowes LP, Alfano LN. et al. Five-year extension results of the phase 1 START trial of onasemnogene abeparvovec in spinal muscular atrophy. JAMA Neurol 2021; 78 (07) 834-841 https://doi.org/10.1001/jamaneurol.2021.1272
- 28 Kirschner J, Butoianu N, Goemans N, Haberlova J, Kostera-Pruszczyk A, Mercuri E. et al. European ad-hoc consensus statement on gene replacement therapy for spinal muscular atrophy. Eur J Paediatr Neurol 2020; 28: P38-P43 https://doi.org/10.1016/j.ejpn.2020.07.001
- 29 Day JW, Finkel RS, Chiriboga CA, Connolly AM, Crawford TO, Darras BT. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021; 20 (04) P284-P293 https://doi.org/10.1016/S1474-4422(21)00001-6
- 30 Mercuri E, Muntoni F, Baranello G, Masson R, Boespflug-Tanguy O, Bruno C. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021; 20 (10) P832-P841
- 31 Strauss K, Muntoni F, Farrar MA, Saito K, Mendell JR, Servais L. et al. Onasemnogene abeparvovec gene therapy in presymptomatic Spinal Muscular Atrophy (SMA): SPR1NT study update in children with three copies of SMN2. MDA (Muscular Dystrophy Association) Congress; 2021. London, UK:
- 32 Strauss K, Muntoni F, Farrar MA, Saito K, Mendell JR, Servais L. et al. Onasemnogene abeparvovec gene therapy in presymptomatic Spinal Muscular Atrophy (SMA): SPR1NT study update in children with three copies of SMN2. MDA (Muscular Dystrophy Association) Congress; 2021. London, UK:
- 33 Waldrop MA, Karingada C, Storey MA, Powers B, Iammarino MA, Miller NF. et al. Gene therapy for spinal muscular atrophy: safety and early outcomes. Pediatrics 2020; 146 (03) e20200729 https://doi.org/10.1542/peds.2020-0729
- 34 Harada Y, Rao VK, Arya K, Kuntz NL, DiDonato CJ, Napchan-Pomerantz G. et al. Combination molecular therapies for type 1 spinal muscular atrophy. Muscle Nerve 2020; 62 (04) 550-554 https://doi.org/10.1002/mus.27034
- 35 Weiß C, Ziegler A, Becker L-L, Johannsen J, Brennenstuhl H, Schreiber G. et al. Gene replacement therapy with onasemnogene abeparvovec in children with spinal muscular atrophy aged 24 months or younger and bodyweight up to 15 kg: an observational cohort study. Lancet Child Adolesc Health 2022; 6 (01) P17-P27 https://doi.org/10.1016/S2352-4642(21)00287-X
- 36 Chand D, Mohr F, McMillan H, Tukov FF, Montgomery K, Kleyn A. et al. Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J Hepatol 2021; 74 (03) P560-P566 https://doi.org/10.1016/j.jhep.2020.11.001
- 37 Al-Zaidy SA, Mendell JR. From clinical trials to clinical practice: practical considerations for gene replacement therapy in SMA Type 1. Pediatr Neurol 2019; 100: P3-11 https://doi.org/10.1016/j.pediatrneurol.2019.06.007
- 38 Chand DH, Zaidman C, Arya K, Millner R, Farrar MA, Mackie FE. et al. Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series. J Pediatr 2021; 231: P265-P268 https://doi.org/10.1016/j.jpeds.2020.11.054
- 39 Witte D, Hartmann H, Drube J, Haffner D, Illsinger S. Thrombotic Microangiopathy (TMA) after Gene Replacemant Therapy (GRT) due to spinal muscular atrophy: case summary and recommendations for treatment. Klin Padiatr 2022; 234 (01) 42-47 https://doi.org/10.1055/a-1538-4936
- 40 Mueller C, Berry JD, McKenna-Yasek DM, Gernoux G, Owegi MA, Pothier LM. et al. SOD1 Suppression with Adeno-associated virus and MicroRNA in familial ALS. N Engl J Med 2020; 383 (02) 151-158 https://doi.org/10.1056/NEJMoa2005056
- 41 Amado DA, Davidson BL. Gene therapy for ALS: a review. Mol Ther 2021; 29 (12) 3345-3358 https://doi.org/10.1016/j.ymthe.2021.04.008
- 42 Nizzardo M, Simone C, Rizzo F, Salani S, Dametti S, Rinchetti P. et al. Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model. Sci Adv 2015; 1 (02) e1500078 https://doi.org/10.1126/sciadv.1500078
- 43 Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM. Complete cloning of the Duchenne Muscular Dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987; 50 (03) 509-517 https://doi.org/10.1016/0092-8674(87)90504-6
- 44 England SB, Nicholson LV, Johnson MA, Forrest SM, Love DR, Zubrzycka-Gaarn EE. et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 1990; 343 6254 180-182 https://doi.org/10.1038/343180a0
- 45 Le Guiner C, Servais L, Montus M, Larcher T, Fraysse B, Moullec S. et al. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne Muscular Dystrophy. Nat Commun 2017; 8: 16105 https://doi.org/10.1038/ncomms16105
- 46 Hakim CH, Wasala NB, Pan X, Kodippili K, Yue Y, Zhang K. et al. A five-repeat micro-dystrophin gene ameliorated dystrophic phenotype in the severe DBA/2J-mdx model of duchenne muscular dystrophy. Mol Ther Methods Clin Dev 2017; 6: 216-230 https://doi.org/10.1016/j.omtm.2017.06.006
- 47 Elangkovan N, Dickson G. Gene therapy for duchenne muscular dystrophy. J Neuromuscul Dis 2021; 8 s2 S303-S316 https://doi.org/10.3233/JND-210678
- 48 Kohler L, Puertollano R, Raben N. Pompe disease: from basic science to therapy. Neurotherapeutics 2018; 15 (04) 928-942 https://doi.org/10.1007/s13311-018-0655-y
- 49 Lim JA, Yi H, Gao F, Raben N, Kishnani PS, Sun B. Intravenous Injection of an AAV-PHP.B Vector encoding human acid α-glucosidase rescues both muscle and CNS defects in murine pompe disease. Mol Ther Methods Clin Dev 2019; 12: 233-245 https://doi.org/10.1016/j.omtm.2019.01.006
- 50 Salabarria SM, Nair J, Clement N, Smith BK, Raben N, Fuller DD. et al. Advancements in AAV-mediated gene therapy for pompe disease. J Neuromuscul Dis 2020; 7 (01) 15-31 https://doi.org/10.3233/JND-190426
- 51 Mack DL, Poulard K, Goddard MA, Latournerie V, Snyder JM, Grange RW. et al. Systemic AAV8-Mediated gene therapy drives whole-body correction of myotubular myopathy in dogs. Mol Ther 2017; 25 (04) 839-854 https://doi.org/10.1016/j.ymthe.2017.02.004
- 52 Wilson JM, Flotte TR. Moving forward after two deaths in a gene therapy trial of myotubular myopathy. Hum Gene Ther 2020; 31(13-14) 695-696 https://doi.org/10.1089/hum.2020.182
- 53 Van Alstyne M, Tattoli I, Delestrée N, Recinos Y, Workman E, Shihabuddin LS. et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat Neurosci 2021; 24 (07) 930-940 https://doi.org/10.1038/s41593-021-00827-3
- 54 Tukov FF, Mansfield K, Milton M, Meseck E, Penraat K, Chand D. et al. Single-dose intrathecal dorsal root ganglia toxicity of onasemnogene abeparvovec in cynomolgus monkeys. Hum Gene Ther 2022; 1-17 https://doi.org/10.1089/hum.2021.255