Subscribe to RSS
DOI: 10.1590/0004-282X-ANP-2022-S138
From clinical phenotype to proteinopathy: molecular neuroimaging in neurodegenerative dementias
Do fenótipo clínico à proteinopatia: a neuroimagem molecular nas demências neurodegenerativasABSTRACT
Neurodegenerative dementias are characterized by the abnormal accumulation of misfolded proteins. However, its diagnostic criteria are still based on the clinical phenotype. The development of biomarkers allowed in vivo detection of pathophysiological processes. This article aims to make a non-systematic review of the use of molecular neuroimaging as a biomarker. Molecular neuroimaging is based on the use of radiotracers for image acquisition. The radiotracer most used in PET is 18F-fluorodeoxyglucose (FDG), with which it is possible to study the regional brain glucose metabolism. The pattern of regional hypometabolism provides neuroanatomical information on the neurodegenerative process, which, in turn, has a good specificity for each type of proteinopathy. FDG is very useful in the differential diagnosis of neurodegenerative dementias through the regional pattern of involvement, including dementia with Lewy bodies and the spectrum of frontotemporal dementia. More recently, radiotracers with specific ligands to some of the pathological proteins have been developed. Pittsburgh compound B (PIB) labeled with 11C and the ligands that use 18F (florbetapir, florbetaben and flutemetamol) are the most used radiotracers for the detection of insoluble β-amyloid peptide in Alzheimer's disease (AD). A first generation of ligands for tau protein has been developed, but it has some affinity for other non-tau protein aggregates. A second generation has the advantage of having a higher affinity for hyperphosphorylated tau protein, including in primary tauopathies.
RESUMO
As demências neurodegenerativas caracterizam-se pelo acúmulo anormal de proteínas mal dobradas. Entretanto, os seus critérios diagnósticos ainda se baseiam no fenótipo clínico. O desenvolvimento de biomarcadores permitiu a detecção in vivo do processo fisiopatológico. O objetivo deste artigo é fazer uma revisão não-sistemática sobre o papel da neuroimagem molecular como biomarcador. A neuroimagem molecular baseia-se no uso de radiotraçadores para aquisição da imagem. O mais usado no PET é o 18F-fluorodeoxiglicose (FDG), com o qual é possível estudar o metabolismo regional de glicose cerebral. O padrão de hipometabolismo regional fornece uma informação neuroanatômica do processo neurodegenerativo que, por sua vez, tem uma boa especificidade para cada tipo de proteinopatia. O PET-FDG é muito útil no diagnóstico diferencial das demências neurodegenerativas através do padrão de acometimento regional, incluindo a demência com corpos de Lewy e o espectro das demências frontotemporais. Mais recentemente, radiotraçadores com ligantes específicos a algumas das proteínas patológicas têm sido desenvolvidos. O composto B de Pittsburgh (PIB) com 11C e os ligantes dos que usam 18F (florbetapir, florbetaben e flutemetamol) são os radiotraçadores mais usados para a detecção de peptídeo β-amiloide insolúvel na doença de Alzheimer (DA). Uma primeira geração de ligantes para proteína tau foi desenvolvida, mas apresenta alguma afinidade a outros agregados proteicos não-tau. Uma segunda geração tem a vantagem de apresentar uma maior afinidade à proteína tau hiperfosforilada, incluindo nas taupatias primárias.
Palavras-chave:
Demência - Tomografia por Emissão de Pósitrons - Amiloide - Proteínas tau - Doença de AlzheimerAuthors’ contributions:
ASN: contributed to study conceptualization, data curation, investigation, methodology, writing (original draft writing - review & editing) of the manuscript for important intellectual content; AMC: contributed to conceptualization, methodology, writing (original draft writing - review & editing) of the manuscript for important intellectual content.
Publication History
Received: 04 April 2022
Accepted: 29 April 2022
Article published online:
06 February 2023
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Ryan NS, Rossor MN, Fox NC. Alzheimer’s disease in the 100 years since Alzheimer’s death. Brain 2015; 138 (12) 3816-3821 https://doi.org/10.1093/brain/awv316
- 2 Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nat Rev Neurol 2013; 9 (01) 13-24 http://doi.org/10.1038/nrneurol.2012.242
- 3 Kertesz A, Kalvach P. Arnold pick and German neuropsychiatry in Prague. Arch Neurol 1996; Sep 1;53(9): 935-938 https://doi.org/10.1001/archneur.1996.00550090147021
- 4 Allegri RF. Moving from neurodegenerative dementias, to cognitive proteinopathies, replacing “where” by “what”….. Dement Neuropsychol 2020; 14 (03) 237-242 https://doi.org/10.1590/1980-57642020dn14-030005
- 5 Espay AJ, Vizcarra JA, Marsili L, Lang AE, Simon DK, Merola A. et al. Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology 2019; 92 (07) 329-337 https://doi.org/10.1212/wnl.2022s1382022s1386926
- 6 Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM. et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7 (03) 280-292
- 7 Hansson O, Batrla R, Brix B, Carrillo MC, Corradini V, Edelmayer RM. et al. The Alzheimer’s Association international guidelines for handling of cerebrospinal fluid for routine clinical measurements of amyloid β and tau. Alzheimers Dement 2021; 17 (09) 1575-1582 https://doi.org/10.1002/alz.12316
- 8 Landau SM, Mintun MA, Joshi AD, Koeppe RA, Petersen RC, Aisen PS. et al. Amyloid deposition, hypometabolism, and longitudinal cognitive decline.. Ann Neurol 2012; 72 (04) 578-586 https://doi.org/10.1002/ana.23650
- 9 Jack Jr CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW. et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 2010; 9 (01) 119-128 https://doi.org/10.1016/s1474-4422(09)70299-6
- 10 Califf RM. Biomarker definitions and their applications. Exp Biol Med 2018; 243 (03) 213-221 https://doi.org/10.1177/1535370217750088
- 11 Klunk WE. Biological Markers of Alzheimer’ s Disease. Neurobiol Aging 1998; 19 (02) 145-147
- 12 Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT. et al. Alzheimer disease. Nat Rev Dis Prim 2021; 7 (01) 33 https://doi.org/10.1038/s41572-021-00269-y
- 13 Villemagne VL, Doré V, Burnham SC, Masters CL, Rowe CC. Imaging Tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol 2018; 14 (04) 225-236 http://doi.org/10.1038/nrneurol.2018.9
- 14 Laforce Jr R, Soucy JP, Sellami L, Dallaire-Théroux C, Brunet F, Bergeron D. et al. Molecular imaging in dementia: Past, present, and future. Alzheimer’s Dement 2018; 14 (11) 1522-1552 https://doi.org/10.1016/j.jalz.2018.06.2855
- 15 Perani D, Iaccarino L, Lammertsma AA, Windhorst AD, Edison P, Boellaard R. et al. A new perspective for advanced positron emission tomography-based molecular imaging in neurodegenerative proteinopathies. Alzheimers Dement 2019; 15 (08) 1081-1103 https://doi.org/10.1016/j.jalz.2019.02.004
- 16 Zimmer ER, Parent MJ, Souza DG, Leuzy A, Lecrux C, Kim HI. et al. 18F FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci 2017; 20 (03) 393-395 https://doi.org/10.1038/nn.4492
- 17 Lesman-Segev OH, La Joie R, Iaccarino L, Lobach I, Rosen HJ, Seo SW. et al. Diagnostic accuracy of Amyloid versus 18F-Fluorodeoxyglucose Positron Emission Tomography in Autopsy-Confirmed Dementia. Ann Neurol 2021; 89 (02) 389-401 https://doi.org/10.1002/ana.25968
- 18 Chételat G, Arbizu J, Barthel H, Garibotto V, Law I, Morbelli S. et al. Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol 2020; 19 (11) 951-962 http://doi.org/10.1016/S1474-4422(20)30314-8
- 19 Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE. et al. Alzheimer’s disease. Lancet 2021; 397 10284 1577-1590 https://doi.org/10.1016/S0140-6736(20)32205-4
- 20 McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr CR, Kawas CH. et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7 (03) 263-269 http://doi.org/10.1016/j.jalz.2011.03.005
- 21 McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 1984; 34 (07) 939-944 https://doi.org/10.1212/wnl.34.7.939
- 22 Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256 5054 184-185 https://doi.org/10.1126/science.1566067
- 23 Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC. et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7 (03) 270-279 https://doi.org/10.1016/j.jalz.2011.03.008
- 24 Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB. et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14 (04) 535-562 https://doi.org/10.1016/j.jalz.2018.02.018
- 25 Hampel H, Cummings J, Blennow K, Gao P, Jack Jr CR, Vergallo A.. Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat Rev Neurol 2021; 17 (09) 580-589 https://doi.org/10.1038/s41582-021-00520-w
- 26 Knopman DS, Haeberlein SB, Carrillo MC, Hendrix JA, Kerchner G, Margolin R. et al. The National Institute on Aging and the Alzheimer’s Association Research Framework for Alzheimer’s disease: perspectives from the research roundtable. Alzheimers Dement 2018; 14 (04) 563-575 https://doi.org/10.1016/j.jalz.2018.03.002
- 27 Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S. et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. Lancet Neurol 2021; 20 (06) P484-P496 https://doi.org/10.1016/s1474-4422(21)00066-1
- 28 Jack Jr CR, Wiste HJ, Weigand SD, Rocca WA, Knopman DS, Mielke MM. et al. Age-specific population frequencies of cerebral β-amyloidosis and neurodegeneration among people with normal cognitive function aged 50-89 years: a cross-sectional study. Lancet Neurol 2014; 13 (10) 997-1005 https://doi.org/10.1016/s1474-4422(14)70194-2
- 29 Toledo JB, Zetterberg H, Van Harten AC, Glodzik L, Martinez-Lage P, Bocchio-Chiavetto L. et al. Alzheimer’s disease cerebrospinal fluid biomarker in cognitively normal subjects. Brain 2015; 138 (09) 2701-2715 https://doi.org/10.1093/brain/awv199
- 30 Toledo JB, Bjerke M, Chen K, Rozycki M, Jack Jr CR, Weiner MW. et al. Memory, executive, and multidomain subtle cognitive impairment: Clinical and biomarker findings. Neurology 2015; 85 (02) 144-153 https://doi.org/10.1212/wnl.2022s1382022s1381738
- 31 Snitz BE, Weissfeld LA, Lopez OL, Kuller LH, Saxton J, Singhabahu DM. et al. Cognitive trajectories associated with β-amyloid deposition in the oldest-old without dementia. Neurology 2013; 80 (15) 1378-1384 https://doi.org/10.1212/wnl.0b013e31828c2fc8
- 32 Villain N, Chételat G, Grassiot B, Bourgeat P, Jones G, Ellis KA. et al. Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxelwise PiB-PET longitudinal study. Brain 2012; 135 (07) 2126-2139 https://doi.org/10.1093/brain/aws125
- 33 Resnick SM, Sojkova J, Zhou Y, An Y, Ye W, Holt DP. et al. Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB. Neurology 2010; 74 (10) 807-815 https://doi.org/10.1212/wnl.0b013e3181d3e3e9
- 34 Doré V, Villemagne VL, Bourgeat P, Fripp J, Acosta O, Chetélat G. et al. Cross-sectional and longitudinal analysis of the relationship between aβ deposition, cortical thickness, and memory in cognitively unimpaired individuals and in alzheimer disease. JAMA Neurol 2013; 70 (07) 903-911 https://doi.org/10.1001/jamaneurol.2013.1062
- 35 Schilling LP Zimmer ER, Shin M Leuzy A, Pascoal TA Bene. et al. Imaging Alzheimer’s disease pathophysiology with PET. Dement Neuropsychol 2016; 10 (02) 79-90 https://doi.org/10.1590/s1980-5764-2016dn1002003
- 36 Murray ME, Lowe VJ, Graff-Radford NR, Liesinger AM, Cannon A, Przybelski SA. et al. Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer’s disease spectrum. Brain 2015; 138 (05) 1370-1381 https://doi.org/10.1093/brain/awv050
- 37 Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y. et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: Phase 3 study. Alzheimer’s Dement 2015; 11 (08) 964-974 https://doi.org/10.1016/j.jalz.2015.02.004
- 38 Rabinovici GD, Gatsonis C, Apgar C, Chaudhary K, Gareen I, Hanna L. et al. Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia. JAMA 2019; 321 (13) 1286-1294 https://doi.org/10.1001/jama.2019.2000
- 39 Hosokawa C, Ishii K, Hyodo T, Sakaguchi K, Usami K, Shimamoto K. et al. Investigation of 11C-PiB equivocal PET findings. Ann Nucl Med 2015; 29 (02) 164-169 https://doi.org/10.1007/s12149-014-0924-8
- 40 Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous MD, Jagust WJ. et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement 2015; 11 (01) 1-15 https://doi.org/10.1016/j.jalz.2014.07.003
- 41 Graff-Radford J, Yong KXX, Apostolova LG, Bouwman FH, Carrillo M, Dickerson BC. et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol 2021; 20 (03) 222-234 https://doi.org/10.1016/S1474-4422(20)30440-3
- 42 Coutinho AM, Busatto GF, Porto FHG, Faria DP, Ono CR, Garcez AT. et al. Correction to: Brain PET amyloid and neurodegeneration biomarkers in the context of the 2018 NIA-AA research framework: an individual approach exploring clinical-biomarker mismatches and sociodemographic parameters. Eur J Nucl Med Mol Imaging 2020; 47 (11) 2715-2716 https://doi.org/10.1007/s00259-020-04933-5
- 43 Jack Jr CR, Therneau TM, Wiste WHJ, Weigand SD, Knopman DS, Lowe VJ. et al. Transition rates between amyloid and neurodegeneration biomarker states and to dementia: a population-based, longitudinal cohort study. Lancet Neurol 2016; 15 (01) P56-P64 https://doi.org/10.1016/S1474-4422(15)00323-3
- 44 Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O. et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 2013; 12 (04) P357-P367 https://doi.org/10.1016/S1474-4422(13)70044-9
- 45 Wang YT, Edison P. Tau Imaging in Neurodegenerative Diseases Using Positron Emission Tomography. Curr Neurol Neurosci Rep 2019; 19 (07) 45 https://doi.org/10.1007/s11910-019-0962-7
- 46 Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E. et al. Tau PET imaging in neurodegenerative tauopathies -still a challenge. Mol Psychiatry 2019; 24 (08) 1112-1134 https://doi.org/10.1038/s41380-018-0342-8
- 47 van der Kant R, Goldstein LSB, Ossenkoppele R. Amyloid-β-independent regulators of Tau pathology in Alzheimer disease. Nat Rev Neurosci 2020; 21 (01) 21-35 https://doi.org/10.1038/s41583-019-0240-3
- 48 Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R. et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci 2022; 23 (01) 53-66 https://doi.org/10.1038/s41583-021-00533-w
- 49 Leuzy A, Smith R, Cullen NC, Strandberg O, Vogel JW, Binette AP. et al. Biomarker-based prediction of longitudinal Tau positron emission tomography in Alzheimer disease. JAMA Neurol 2022; 79 (02) 149-158 https://doi.org/10.1001/jamaneurol.2021.4654
- 50 Ossenkoppele R, Smith R, Mattsson-Carlgren N, Groot C, Leuzy A, Strandberg O. et al. Accuracy of Tau positron emission tomography as a prognostic marker in preclinical and prodromal Alzheimer disease: a head-to-head comparison against amyloid positron emission tomography and magnetic resonance imaging. JAMA Neurol 2021; 78 (08) 961-971 https://doi.org/10.1001/jamaneurol.2021.1858
- 51 Fleisher AS, Pontecorvo MJ, Devous MD, Lu M, Arora AK, Truocchio SP. et al. Positron emission tomography imaging with [18F]flortaucipir and postmortem assessment of Alzheimer disease neuropathologic changes. JAMA Neurol 2020; 77 (07) 829-839 https://doi.org/10.1001/jamaneurol.2020.0528
- 52 Mattay VS, Fotenos AF, Ganley CJ, Marzella L. Brain Tau imaging: food and drug administration approval of 18F-flortaucipir injection. J Nucl Med 2020; 61 (10) 1411-1412 https://doi.org/10.2967/jnumed.120.252254
- 53 Mormino EC, Toueg TN, Azevedo C, Castillo JB, Guo W, Nadiadwala A. et al. Tau PET imaging with 18F-PI-2620 in aging and neurodegenerative diseases. Eur J Nucl Med Mol Imaging 2021; 48 (07) 2233-2244 https://doi.org/10.1007/s00259-020-04923-7
- 54 Malarte M-L, Nordberg A, Lemoine L. Characterization of MK6240, a Tau PET tracer, in autopsy brain tissue from Alzheimer’s disease cases. Eur J Nucl Med Mol Imaging 2021; 48 (04) 1093-1102 https://doi.org/10.1007/s00259-020-05035-y
- 55 Leuzy A, Smith R, Ossenkoppele R, Santillo A, Borroni E, Klein G. et al. Diagnostic performance of RO948 F 18 Tau positron emission tomography in the differentiation of Alzheimer disease from other neurodegenerative disorders. JAMA Neurol 2020; 77 (08) 955-965 https://doi.org/10.1001/jamaneurol.2020.0989
- 56 Leuzy A, Smith R, Cullen NC, Strandberg O, Vogel JW, Binette AP. et al. Biomarker-Based Prediction of Longitudinal Tau Positron Emission Tomography in Alzheimer Disease. JAMA Neurol 2022; 79 (02) 149-158 https://doi.org/10.1001/jamaneurol.2021.4654
- 57 Soleimani-Meigooni DN, Iaccarino L, La Joie R, Baker S, Bourakova V, Boxer AL. et al. 18F-flortaucipir PET to autopsy comparisons in Alzheimer’s disease and other neurodegenerative diseases. Brain 2020; 143 (11) 3477-3494 https://doi.org/10.1093/brain/awaa276
- 58 Brendel M, Barthel H, van Eimeren T, Marek K, Beyer L, Song M. et al. Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol 2020; 77 (11) 1408-1419 https://doi.org/10.1001/jamaneurol.2020.2526
- 59 Ossenkoppele R, Pijnenburg YAL, Perry DC, Cohn-Sheehy BI, Scheltens NME, Vogel JW. et al. The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain 2015; 138 (09) 2732-2749 https://doi.org/10.1093/brain/awv191
- 60 Parmera JB, Coutinho AM, Aranha MR, Studart-Neto A, Carneiro CG, de Almeida IJ. et al. FDG-PET patterns predict amyloid deposition and clinical profile in corticobasal syndrome. Mov Disord 2021; 36 (03) 651-661 https://doi.org/10.1002/mds.28373
- 61 Walker Z, Possin KL, Boeve BF, Aarsland D. Lewy body dementias. Lancet 2015; 386 10004 1683-1697 https://doi.org/10.1016/S0140-6736(15)00462-6
- 62 McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D. et al. Diagnosis and management of dementia with Lewy bodies. Neurology 2017; 89 (01) 88-100 https://doi.org/10.1212/WNL.2022s1382022s1384058
- 63 Stoessl AJ, Lehericy S, Strafella AP. Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia. Lancet 2014; 384 9942 532-544 https://doi.org/10.1016/S0140-6736(14)60041-6
- 64 Parmera JB, Brucki S, Nitrini R. Reader response: diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 2018; 90 (06) 299-300 https://doi.org/10.1212/WNL.2022s1382022s1384917
- 65 Graff-Radford J, Murray ME, Lowe VJ, Boeve BF, Ferman TJ, Przybelski SA. et al. Dementia with Lewy bodies: basis of cingulate island sign. Neurology 2014; 83 (09) 801-809 https://doi.org/10.1212/WNL.2022s1382022s1380734
- 66 Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet 2015; 386 10004 P1672-P1682 https://doi.org/10.1016/S0140-6736(15)00461-4
- 67 Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A. et al. Structure-based classification of tauopathies. Nature 2021; 598 7880 359-363 https://doi.org/10.1038/s41586-021-03911-7
- 68 Valli M, Strafella AP. New advances in Tau imaging in parkinsonism. Int Rev Psychiatry 2017; 29 (06) 628-635 https://doi.org/10.1080/09540261.2017.1396446
- 69 Tsai RM, Bejanin A, Lesman-Segev O, Lajoie R, Visani A, Bourakova V. et al. 18F-flortaucipir (AV-1451) Tau PET in frontotemporal dementia syndromes. Alzheimers Res Ther 2019; 11 (01) 13 https://doi.org/10.1186/s13195-019-0470-7
- 70 Levy JP, Bezgin G, Savard M, Pascoal TA, Finger E, Laforce R. et al. 18F-MK-6240 Tau-PET in genetic frontotemporal dementia. Brain 2022; 145 (05) 1763-1772 https://doi.org/10.1093/brain/awab392
- 71 Graff-Radford NR, Woodruff BK. Frontotemporal dementia. Semin Neurol 2007; 27 (01) 48-57 https://doi.org/10.1055/s-2006-956755
- 72 Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF. et al. Classification of primary progressive aphasia and its variants. Neurology 2011; 76 (11) 1006-1014 https://doi.org/10.1212/WNL.0b013e31821103e6
- 73 Meeter LH, Kaat LD, Rohrer JD, van Swieten JC. Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol 2017; 13 (07) 406-419 https://doi.org/10.1038/nrneurol.2017.75
- 74 Whitwell JL, Weigand SD, Boeve BF, Senjem ML, Gunter JL, Dejesus-Hernandez M. et al. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, Tau, progranulin and sporadics. Brain 2012; 135 (03) 794-806 https://doi.org/10.1093/brain/aws001