Subscribe to RSS
DOI: 10.1590/0004-282X20160005
Extratemporal abnormalities in phosphorus magnetic resonance spectroscopy of patients with mesial temporal sclerosis
Anormalidades extratemporais na espectroscopia de fósforo por ressonância magnética em pacientes com esclerose mesial temporalABSTRACT
Objective We evaluated extratemporal metabolic changes with phosphorus magnetic resonance spectroscopy (31P-MRS) in patients with unilateral mesial temporal sclerosis (MTS).
Method 31P-MRS of 33 patients with unilateral MTS was compared with 31 controls. The voxels were selected in the anterior, posterior insula-basal ganglia (AIBG, PIBG) and frontal lobes (FL). Relative values of phosphodiesters- PDE, phosphomonoesters-PME, inorganic phosphate - Pi, phosphocreatine- PCr, total adenosine triphosphate [ATPt = γ- + a- + b-ATP] and the ratios PCr/ATPt, PCr/γ-ATP, PCr/Pi and PME/PDE were obtained.
Results We found energetic abnormalities in the MTS patients compared to the controls with Pi reduction bilaterally in the AIBG and ipsilaterally in the PIBG and the contralateral FL; there was also decreased PCr/γ-ATP in the ipsilateral AIBG and PIBG. Increased ATPT in the contralateral AIBG and increased γ-ATP in the ipsilateral PIBG were detected.
Conclusion Widespread energy dysfunction was detected in patients with unilateral MTS.
RESUMO
Objetivo Nós avaliamos as alterações metabóblicas através da espectroscopia de fósforo por ressonância magnética (31P-MRS) em pacientes com esclerose mesial temporal (EMT) unilateral.
Método 31P-MRS de 33 pacientes com EMT unilateral foram comparadas aos de 31 controles. Foram selecionados os voxels nas regiões insulonuclear anterior e posterior (RINA e RINP) e frontal (RF). Os valores relativos de fosfodiésteres – PDE, fosfomonoésteres- PME, fosfato inorgânico- Pi, fosfocreatina –PCr, adenosina trifosfato total [ATPt = γ- + a- + b-ATP] e as razões PCr/ATPt, PCr/γ-ATP, PCr/Pi e PME/PDE foram obtidas.
Resultados Nós encontramos anormalidades em pacientes com EMT em comparação aos controles. Redução de Pi nas RINA bilateralmente, RINP ipsilateral e RF contralateral, redução de PCr/γ-ATP nas RINA e RINP ipsilaterais foram detectadas. Aumentos de ATPT na RINA contralateral e aumento de γ-ATP na RINP ipsilateral também foram encontradas.
Conclusão Disfunção energética difusa foi encontrada em pacientes com EMT unilateral.
Publication History
Received: 19 June 2015
Accepted: 26 October 2015
Article published online:
06 September 2023
© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Falconer M, Serafetinides E, Corsellis J. Etiology and pathogenesis of temporal lobe epilepsy. Arch Neurol. 1964;10(3):233-48. doi:10.1001/archneur.1964.00460150003001
- 2 Engel J, Brown WJ, Kuhl DE, Phelps ME, Mazziotta JC, Crandall PH. Pathological findings underlying focal temporal lobe hypometabolism in partial epilepsy. Ann Neurol. 1982;12(6):518-28. doi:10.1002/ana.410120604
- 3 Bouilleret V, Semah F, Chassoux F, Mantzaridez M, Biraben A, Trebossen R et al. Basal ganglia involvement in temporal lobe epilepsy: a functional and morphologic study. Neurology. 2008;70(3):177-84. doi:10.1212/01.wnl.0000297514.47695.48
- 4 Jokeit H, Seitz RJ, Markowitsch HJ, Neumann N, Witte OW, Ebner A. Prefrontal asymmetric interictal glucose hypometabolism and cognitive impairment in patients with temporal lobe epilepsy. Brain. 1997;120(12):2283-94. doi:10.1093/brain/120.12.2283
- 5 Pan JW, Williamson A, Cavus I, Hetherington HP, Zaveri H, Petroff OAC et al. Neurometabolism in human epilepsy. Epilepsia. 2008;49(Suppl s3):31-41. doi:10.1111/j.1528-1167.2008.01508.x
- 6 Pillai JJ, Williams HT, Faro S. Functional imaging in temporal lobe epilepsy. Semin Ultrasound CT MR. 2007;28(6):437-50. doi:10.1053/j.sult.2007.09.006
- 7 Capizzano AA, Vermathen P, Laxer KD, Matson GB, Maudsley AA, Soher BJ et al. Multisection proton MR spectroscopy for mesial temporal lobe epilepsy. AJNR Am J Neuroradiol. 2002;23(8):1359-68.
- 8 Cendes F, Caramanos Z, Andermann F, Dubeau F, Arnold DL. Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients. Ann Neurol. 1997;42(5):737-46. doi:10.1002/ana.410420510
- 9 Connelly A, Jackson GD, Duncan JS, King MD, Gadian DG. Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology. 1994;44(8):1411-7. doi:10.1212/WNL.44.8.1411
- 10 Kuzniecky R, Hugg JW, Hetherington H, Butterworth E, Bilir E, Faught E et al. Relative utility of 1H spectroscopic imaging and hippocampal volumetry in the lateralization of mesial temporal lobe epilepsy. Neurology. 1998;51(1):66-71. doi:10.1212/WNL.51.1.66
- 11 Hetherington HP, Kuzniecky RI, Vives K, Devinsky O, Pacia S, Luciano D et al. A subcortical network of dysfunction in TLE measured by magnetic resonance spectroscopy. Neurology. 2007;69(24):2256-65. doi:10.1212/01.wnl.0000286945.21270.6d
- 12 Kuzniecky R, Hugg J, Hetherington H, Martin R, Faught E, Morawetz R et al. Predictive value of 1H MRSI for outcome in temporal lobectomy. Neurology. 1999;53(4):694-8.
- 13 Menuel C, Guillevin R, Costalat R. Perrin M, Sahli-Amor M,Martin- Duverneuil N et al. Phosphorus magnetic resonance spectroscopy: brain pathologies applications. J Neuroradiol. 2010;37(2):73-82. doi:10.1016/j.neurad.2009.07.001
- 14 Chu WJ, Hetherington HP, Kuzniecky RI, Simor T, Mason GF, Elgavish GA. Lateralization of human temporal lobe epilepsy by 31P NMR spectroscopic imaging at 4.1 T. Neurology. 1998;51(2):472-9. doi:10.1212/WNL.51.2.472
- 15 Pan JW, Kim JH, Cohen-Gadol A, Pan C, Spencer DD, Hetherington HP. Regional energetic dysfunction in hippocampal epilepsy. Acta Neurol Scand. 2005;111(4):218-24. doi:10.1111/j.1600-0404.2005.00398.x
- 16 Vanhamme L, Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129(1):35-43. doi:10.1006/jmre.1997.1244
- 17 Erecińska M, Silver IA. ATP and brain function. J Cereb Blood Flow Metab. 1989;9(1):2-19. doi:10.1038/jcbfm.1989.2
- 18 Hugg JW, Laxer KD, Matson GB, Maudsley AA, Husted CA, Weiner MW. Lateralization of human focal epilepsy by 31P magnetic resonance spectroscopic imaging. Neurology. 1992;42(10):2011-8. doi:10.1212/WNL.42.10.2011
- 19 Grond J, Gerson JR, Laxer KD, Hugg JW, Matson GB, Weiner MW. Regional distribution of interictal 31P metabolic changes in patients with temporal lobe epilepsy. Epilepsia. 1998;39(5):527-36.
- 20 Petroff OA, Prichard JW, Behar KL, Alger JR, Shulman RG. In vivo phosphorus nuclear magnetic resonance spectroscopy in status epilepticus. Ann Neurol. 1984;16(2):169-77. doi:10.1002/ana.410160203
- 21 Younkin DP, Delivoria-Papadopoulos M, Maris J, Donlon E, Clancy R, Chance B. Cerebral metabolic effects of neonatal seizures measured with in vivo 31P NMR spectroscopy. Ann Neurol. 1986;20(4):513-9. doi:10.1002/ana.410200412
- 22 Patel TB, Clark JB. Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem J. 1979;184(3):539-46. doi:10.1042/bj1840539
- 23 Heales SJ, Davies SE, Bates TE, Clark JB. Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration. Neurochem Res. 1995;20(1):31-8. doi:10.1007/BF00995149
- 24 Waldbaum S, Patel M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res. 2010;88(1):23-45. doi:10.1016/j.eplepsyres.2009.09.020
- 25 Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell. 1990;61(6):931-7. doi:10.1016/0092-8674(90)90059-N
- 26 Yamamoto H, Tang HW. Preventive effect of melatonin against cyanide-induced seizures and lipid peroxidation in mice. Neurosci Lett. 1996;207(2):89-92. doi:10.1016/0304-3940(96)12493-9
- 27 Forester B, Berlow Y, Harper D, Jensen JE, Lange N, Froimowitz MP et al. Age-related changes in brain energetics and phospholipid metabolism. NMR Biomed. 2010;23(3):242-50. doi:10.1002/nbm.1444