Subscribe to RSS
DOI: 10.1590/0004-282X20160080
A diagnostic approach for neurodegeneration with brain iron accumulation: clinical features, genetics and brain imaging
Uma orientação diagnóstica para neurodegeneração com acúmulo cerebral de ferro: aspectos clínicos, genéticos e de neuroimagemABSTRACT
Neurodegeneration with brain iron accumulation (NBIA) represents a heterogeneous and complex group of inherited neurodegenerative diseases, characterized by excessive iron accumulation, particularly in the basal ganglia. Common clinical features of NBIA include movement disorders, particularly parkinsonism and dystonia, cognitive dysfunction, pyramidal signs, and retinal abnormalities. The forms of NBIA described to date include pantothenase kinase-associated neurodegeneration (PKAN), phospholipase A2 associated neurodegeneration (PLAN), neuroferritinopathy, aceruloplasminemia, beta-propeller protein-associated neurodegeneration (BPAN), Kufor-Rakeb syndrome, mitochondrial membrane protein-associated neurodegeneration (MPAN), fatty acid hydroxylase-associated neurodegeneration (FAHN), coenzyme A synthase protein-associated neurodegeneration (CoPAN) and Woodhouse-Sakati syndrome. This review is a diagnostic approach for NBIA cases, from clinical features and brain imaging findings to the genetic etiology.
RESUMO
A neurodegeneração com acúmulo cerebral de ferro (sigla em inglês NBIA) representa um grupo heterogêneo e complexo de doenças neurodegenerativas hereditárias, caracterizada pelo acúmulo cerebral de ferro, especialmente nos núcleos da base. O quadro clínico das NBIAs em geral inclui distúrbios do movimento, particularmente parkinsonismo e distonia, disfunção cognitiva, sinais piramidais e anormalidades da retina. As formas de NBIA descritas até o momento incluem neurodegeneração associada a pantothenase kinase (PKAN), neurodegeneração associada a phospholipase A2 (PLAN), neuroferritinopatia, aceruloplasminemia, neurodegeneração associada a beta-propeller protein (BPAN), síndrome de Kufor-Rakeb, neurodegeneração associada a mitochondrial membrane protein (MPAN), neurodegeneração associada a “fatty acid hydroxylase” (FAHN), neurodegeneração associada a coenzyme A synthase protein (CoPAN) e síndrome de Woodhouse-Sakati. Esta revisão é uma orientação para o diagnóstico das NBIAs, partindo das características clínicas e achados de neuroimagem, até a etiologia genética.
Publication History
Received: 10 April 2016
Accepted: 26 April 2016
Article published online:
06 September 2023
© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Hogarth P. Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord. 2015;8(1):1-13. doi:10.14802/jmd.14034
- 2 Kara E, Hardy J, Houlden H. The pallidopyramidal syndromes: nosology, aetiology and pathogenesis. Curr Opin Neurol. 2013;26(4):381-94. doi:10.1097/WCO.0b013e3283632e83
- 3 Hayflick SJ, Westaway SK, Levinson B, Zhou B, Johnson MA, Ching KH et al. Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med. 2003;348(1):33-40. doi:10.1056/NEJMoa020817
- 4 Hunt J. A system disease of the paralysis agitans type, characterized by atrophy of the motor cells of the corpus striatuma contribution to the functions of the corpus striatum. Brain. 1917;40(1):58-148. doi:10.1093/brain/40.1.58 First published title: Progressive atrophy of the globus pallidus.
- 5 Hallervorden J, Spatz H. Eigenartige erkrankung im extrapyramidalen system mit besonderer beteiligung des globus pallidus und der substantia nigra: Ein beitrag zu den beziehungen zwischen diesen beiden zentren. Z Gesamte Neurol Psychiatr. 1922;79(1):254-302. doi:10.1007/BF02878455
- 6 Davison C. Pallido-pyramidal disease. J Neuropathol Exp Neurol. 1954;13(1):50-9. doi:10.1097/00005072-195401000-00007
- 7 Horstink MW, Dekker MC, Montagna P, Bonifati V, van De Warrenburg BP et al. Pallidopyramidal disease: a misnomer? Mov Disord. 2010;25(9):1109-15. doi:10.1002/mds.23118
- 8 Kruer M. The neuropathology of neurodegeneration with brain iron accumulation. Int Rev Neurobiol. 2013;110:165-94. doi:10.1016/B978-0-12-410502-7.00009-0
- 9 Kurian MA, McNeill A, Lin JP, Maher ER. Childhood disorders of neurodegeneration with brain iron accumulation (NBIA). Dev Med Child Neurol. 2011;53(5):394-404. doi:10.1111/j.1469-8749.2011.03955.x
- 10 Levi S, Finazzi D. Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol. 2014;5:99. doi: 10.3389/fphar.2014.00099
- 11 Levi S, Rovida E. Neuroferritinopathy: from ferritin structure modification to pathogenetic mechanism. Neurobiol Dis. 2015; 81:134-43. doi:10.1016/j.nbd.2015.02.007
- 12 Lee CH, Lu CS, Chuang WL, Yeh TH, Jung SM, Huang CL et al. Phenotypes and genotypes of patients with pantothenate kinase-associated neurodegeneration in Asian and Caucasian populations: 2 cases and literature review. ScientificWorldJournal. 2013;2013:860539. doi:10.1155/2013/860539
- 13 Tonekaboni SH, Mollamohammadi M. Neurodegeneration with brain iron accumulation: an overview. Iran J Child Neurol. 2014;8(4):1-8.
- 14 Meyer E, Kurian MA, Hayflick SJ. Neurodegeneration with brain iron accumulation:enetic diversity and pathophysiological mechanisms. Annu Rev Genomics Hum Genet. 2015;16(1):257-79. doi:10.1146/annurev-genom-090314-025011
- 15 Amaral L, Gaddikeri S, Chapman PR, Roy R, Gaddikeri RS, Marussi Vh et al. Neurodegeneration with brain iron accumulation: clinicoradiological approach to diagnosis. J Neuroimaging. 2015;25(4):539-51. doi:10.1111/jon.12195
- 16 Pedroso JL, Proveti P, Teixeira LF, Sallum JM, Barsottini OG. Retinitis pigmentosa in pantothenate kinase-associated neurodegeneration. Arq Neuropsiquiatr. 2014;72(10):816-7. doi:10.1590/0004-282X20140122
- 17 Cossu G, Abbruzzese G, Matta G, Murgia D, Melis M, Ricchi V et al. Efficacy and safety of deferiprone for the treatment of pantothenate kinase-associated neurodegeneration (PKAN) and neurodegeneration with brain iron accumulation (NBIA): results from a four years follow-up. Parkinsonism Relat Disord. 2014;20(6):651-4. doi:10.1016/j.parkreldis.2014.03.002
- 18 Khateeb S, Flusser H, Ofir R, Shelef I, Narkis G, Vardi G et al. PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet. 2006;79(5):942-8. doi:10.1086/508572
- 19 Schneider SA, Dusek P, Hardy J, Westenberger A, Jankovic J, Bhatia KP. Genetics and pathophysiology of neurodegeneration with brain iron accumulation (NBIA). Curr Neuropharmacol. 2013;11(1):59-79. doi:10.2174/157015913804999469
- 20 Gregory A, Polster BJ, Hayflick SJ. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet. 2009;46(2):73-80. doi:10.1136/jmg.2008.061929
- 21 Kruer MC, Boddaert N, Schneider SA, Houlden H, Bhatia KP, Gregory A et al. Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR Am J Neuroradiol. 2012;33(3):407-14. doi:10.3174/ajnr.A2677
- 22 Levi S, Rovida E. Neuroferritinopathy: from ferritin structure modification to pathogenetic mechanism. Neurobiol Dis. 2015;81:134-43. doi:10.1016/j.nbd.2015.02.007
- 23 Hautot D, Pankhurst QA, Morris CM, Curtis A, Burn J, Dobson J. Preliminary observation of elevated levels of nanocrystalline iron oxide in the basal ganglia of neuroferritinopathy patients. Biochim Biophys Acta. 2007;1772(1):21-5. doi:10.1016/j.bbadis.2006.09.011
- 24 Keogh MJ, Morris CM, Chinnery PF. Neuroferritinopathy. Int Rev Neurobiol. 2013;110:91-123. doi:10.1016/B978-0-12-410502-7.00006-5
- 25 Miyajima H. Aceruloplasminemia. Neuropathology. 2015;35(1):83-90. doi:10.1111/neup.12149
- 26 Miyajima H, Kohno S, Takahashi Y, Yonekawa O, Kanno T. Estimation of the gene frequency of aceruloplasminemia in Japan. Neurology. 1999;53(3):617-9. doi:10.1212/WNL.53.3.617
- 27 Bosio S, De Gobbi M, Roetto A, Zecchina G, Leonardo E, Rizzetto M et al. Anemia and iron overload due to compound heterozygosity for novel ceruloplasmin mutations. Blood. 2002;100(6):2246-8. doi:10.1182/blood-2002-02-0584
- 28 Tai M, Matsuhashi N, Ichii O, Suzuki T, Ejiri Y, Kono S et al. Case of presymptomatic aceruloplasminemia treated with deferasirox. Hepatol Res. 2014;44(12):1253-8. doi:10.1111/hepr.12292
- 29 Vroegindeweij LH, Beek EH, Boon AJ, Hoogendoorn M, Kievit JA, Wilson JH et al. Aceruloplasminemia presents as Type 1 diabetes in non-obese adults: a detailed case series. Diabet Med. 2015;32(8):993-1000. doi:10.1111/dme.12712
- 30 McNeill A, Birchall D, Hayflick SJ, Gregory A, Schenk JF, Zimmerman EA et al. T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology. 2008;70(18):1614-9. doi:10.1212/01.wnl.0000310985.40011.d6
- 31 Miyajima H, Kono S, Takahashi Y, Sugimoto M. Increased lipid peroxidation and mitochondrial dysfunction in aceruloplasminemia brains. Blood Cells Mol Dis. 2002;29(3):433-8. doi:10.1006/bcmd.2002.0561
- 32 Miyajima H, Kono S, Takahashi Y, Sugimoto M, Sakamoto M, Sakai N. Cerebellar ataxia associated with heteroallelic ceruloplasmin gene mutation. Neurology. 2001;57(12):2205-10. doi:10.1212/WNL.57.12.2205
- 33 Kruer MC, Boddaert N. Neurodegeneration with brain iron accumulation: a diagnostic algorithm. Semin Pediatr Neurol. 2012;19(2):67-74. doi:10.1016/j.spen.2012.04.001
- 34 Grisoli M, Piperno A, Chiapparini L, Mariani R, Savoiardo M. MR imaging of cerebral cortical involvement in aceruloplasminemia. AJNR Am J Neuroradiol. 2005;26(3):657-61.
- 35 Kuhn J, Bewermeyer H, Miyajima H, Takahashi Y, Kuhn KF, Hoogenraad TU. Treatment of symptomatic heterozygous aceruloplasminemia with oral zinc sulphate. Brain Dev. 2007;29(7):450-3. doi:10.1016/j.braindev.2007.01.001
- 36 Rusticeanu M, Zimmer V, Schleithoff L, Wonney K, Viera J, Zimmer A et al. Novel ceruloplasmin mutation causing aceruloplasminemia with hepatic iron overload and diabetes without neurological symptoms. Clin Genet. 2014;85(3):300-1. doi:10.1111/cge.12145
- 37 Pan PL, Tang HH, Chen Q, Song W, Shang HF. Desferrioxamine treatment of aceruloplasminemia: long-term follow-up. Mov Disord. 2011;26(11):2142-4. doi:10.1002/mds.23797
- 38 Finkenstedt A, Wolf E, Höfner E, Gasser BI, Bösch S, Bakry R et al. Hepatic but not brain iron is rapidly chelated by deferasirox in aceruloplasminemia due to a novel gene mutation. J Hepatol. 2010;53(6):1101-7. doi:10.1016/j.jhep.2010.04.039
- 39 Bove F, Fasano A. Iron chelation therapy to prevent the manifestations of aceruloplasminemia. Neurology. 2015;85(12):1085-6. doi:10.1212/WNL.20160080201600801956
- 40 Hayflick SJ, Kruer MC, Gregory A, Haack TB, Kurian MA, Houlden HH et al. β-Propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain. 2013;136(6):1708-17. doi:10.1093/brain/awt095
- 41 Long M, Abdeen N, Geraghty MT, Hogarth P, Hayflick S, Venkateswaran S. Novel WDR45 mutation and pathognomonic BPAN imaging in a young female with mild cognitive delay. Pediatrics. 2015;136(3):714-7. doi:10.1542/peds.2015-0750
- 42 Ichinose Y, Miwa M, Onohara A, Obi K, Shindo K, Saitsu H et al. Characteristic MRI findings in beta-propeller protein-associated neurodegeneration (BPAN). Neurol Clin Pract. 2014;4(2):175-7. doi:10.1212/01.CPJ.0000437694.17888.9b
- 43 Paudel R, Li A, Wiethoff S, Bandopadhyay R, Bhatia K, Silva R et al. Neuropathology of Beta-propeller protein associated neurodegeneration (BPAN): a new tauopathy. Acta Neuropathol Commun. 2015;3(1):39. doi:10.1186/s40478-015-0221-3
- 44 Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid LP et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38(10):1184-91. doi:10.1038/ng1884
- 45 Di Fonzo A, Chien HF, Socal M, Giraudo S, Tassorelli C, Iliceto G et al. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology. 2007;68(19):1557-62. doi:10.1212/01.wnl.0000260963.08711.08
- 46 Lees AJ, Singleton AB. Clinical heterogeneity of ATP13A2 linked disease (Kufor-Rakeb) justifies a PARK designation. Neurology. 2007;68(19):1553-4. doi:10.1212/01.wnl.0000265228.66664.f4
- 47 Park JS, Blair NF, Sue CM. The role of ATP13A2 in Parkinson’s disease: clinical phenotypes and molecular mechanisms. Mov Disord. 2015;30(6):770-9. doi:10.1002/mds.26243
- 48 Chien HF, Bonifati V, Barbosa ER. ATP13A2-related neurodegeneration (PARK9) without evidence of brain iron accumulation. Mov Disord. 2011;26(7):1364-5. doi:10.1002/mds.23514
- 49 Schulte EC, Claussen MC, Jochim A, Haack T, Hartig M, Hempel M et al. Mitochondrial membrane protein associated neurodegeneration: a novel variant of neurodegeneration with brain iron accumulation. Mov Disord. 2013;28(2):224-7. doi:10.1002/mds.25256
- 50 Skowronska M, Kmiec T, Kurkowska-Jastrzębska I, Czlonkowska A. Eye of the tiger sign in a 23 year patient with mitochondrial membrane protein associated neurodegeneration. J Neurol Sci. 2015;352(1-2):110-1. doi:10.1016/j.jns.2015.03.019
- 51 Pedroso JL, Handfas BW, Abrahão A, Kok F, Barsottini OG, Oliveira AS. Fatty acid 2-hydroxylase deficiency: clinical features and brain iron accumulation. Neurology. 2015;84(9):960-1. doi:10.1212/WNL.20160080201600801316
- 52 Schneider SA, Bhatia KP. Three faces of the same gene: FA2H links neurodegeneration with brain iron accumulation, leukodystrophies, and hereditary spastic paraplegias. Ann Neurol. 2010;68(5):575-7. doi:10.1002/ana.22211
- 53 Dick KJ, Eckhardt M, Paisán-Ruiz C, Alshehhi AA, Proukakis C, Sibtain NA et al. Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat. 2010;31(4):E1251-60. doi:10.1002/humu.21205
- 54 Hama H. Fatty acid 2-hydroxylation in mammalian sphingolipid biology. Biochim Biophys Acta. 2010;1801(4):405-14. doi:10.1016/j.bbalip.2009.12.004
- 55 Kruer MC, Paisán-Ruiz C, Boddaert N, Yoon MY, Hama H, Gregory A et al. Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol. 2010;68(5):611-8. doi:10.1002/ana.22122
- 56 Dusi S, Valletta L, Haack TB, Tsuchiya Y, Venco P, Pasqualato S et al. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am J Hum Genet. 2014;94(1):11-22. doi:10.1016/j.ajhg.2013.11.008
- 57 Alazami AM, Al-Saif A, Al-Semari A, Bohlega S, Zlitni S, Alzahrani F et al. Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome. Am J Hum Genet. 2008;83(6):684-91. doi:10.1016/j.ajhg.2008.10.018
- 58 Alazami AM, Schneider SA, Bonneau D, Pasquier L, Carecchio M, Kojovic M et al. C2orf37 mutational spectrum in Woodhouse-Sakati syndrome patients. Clin Genet. 2010;78(6):585-90. doi:10.1111/j.1399-0004.2010.01441.x
- 59 Horvath R, Lewis-Smith D, Douroudis K, Duff J, Keogh M, Pyle A et al. SCP2 mutations and neurodegeneration with brain iron accumulation. Neurology. 2015;85(21):1909-11. doi: 10.1212/WNL.20160080201600802157