CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2016; 74(08): 671-678
DOI: 10.1590/0004-282X20160101
VIEWS AND REVIEWS

Are astrocytes executive cells within the central nervous system?

¿Son los astrocitos células ejecutivas dentro del Sistema Nervioso Central?
Roberto E. Sica
1   Universidad de Buenos Aires, Escuela de Medicina, Instituto de Investigaciones Cardiológicas, Buenos Aires, Argentina.
,
Roberto Caccuri
1   Universidad de Buenos Aires, Escuela de Medicina, Instituto de Investigaciones Cardiológicas, Buenos Aires, Argentina.
,
Cecilia Quarracino
1   Universidad de Buenos Aires, Escuela de Medicina, Instituto de Investigaciones Cardiológicas, Buenos Aires, Argentina.
,
Francisco Capani
1   Universidad de Buenos Aires, Escuela de Medicina, Instituto de Investigaciones Cardiológicas, Buenos Aires, Argentina.
› Author Affiliations

ABSTRACT

Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson’s disease, Alzheimer’s dementia, Huntington’s dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well.

RESUMEN

Evidencias experimentales sugieren que los astrocitos desempeñan un rol crucial en la fisiología del sistema nervioso central (SNC) modulando la actividad y plasticidad sináptica. En base a lo actualmente conocido creemos que los astrocitos participan, en pie de igualdad con las neuronas, en los procesos de información del SNC. Además, observaciones experimentales y humanas encontraron que algunas de las enfermedades degenerativas primarias del SNC: la demencia fronto-temporal; las enfermedades de Parkinson, de Alzheimer, y de Huntington, las ataxias cerebelosas primarias y la esclerosis lateral amiotrófica, que afectan solo a los humanos, pueden deberse a astroglíopatía. Esta hipótesis se sustenta en hallazgos que demostraron que la muerte neuronal que en ellas ocurre es debida al compromiso de células no-neuronales que juegan rol principal en su iniciación y desarrollo. Más aún, observaciones recientes señalan que los astrocitos podrían estar implicados en la patogenia de algunas enfermedades psiquiátricas.



Publication History

Received: 04 March 2016

Accepted: 16 March 2016

Article published online:
06 September 2023

© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Navarrete M, Araque A. The Cajal school and the physiological role of astrocytes: a way of thinking. Front Neuroanat. 2014;8:33-52. doi:10.3389/fnana.2014.00033
  • 2 Sica RE, Nicola AF, Deniselle MC, Rodriguez G, Monachelli GM, Peralta LM et al. Sporadic amyotrophic lateral sclerosis: new hypothesis regarding its etiology and pathogenesis suggests that astrocytes might be the primary target hosting a still unknown external agent. Arq Neuropsiquiatr. 2011;69(4):699-706. doi:10.1590/S0004-282X2011000500023
  • 3 Sica RE. Could astrocytes be the primary target of an offending agent causing the primary degenerative diseases of the human central nervous system? A hypothesis. Med Hypotheses. 2015;84(5):481-9. doi:10.1016/j.mehy.2015.02.004
  • 4 Barnett SC, Linington C. Myelination: do astrocytes play a role? Neuroscientist. 2013;19(5):442-50. doi:10.1177/1073858412465655
  • 5 Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG et al. Glial cells in (patho)physiology. J Neurochem. 2012;121(1):4-27. doi:10.1111/j.1471-4159.2012.07664.x
  • 6 DiNuzzo M, Mangia S, Maraviglia B, Giove F. Regulatory mechanisms for glycogenolysis and K+ uptake in brain astrocytes. Neurochem Int. 2013;63(5):458-64. doi:10.1016/j.neuint.2013.08.004
  • 7 Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014;94(4):1077-98. doi:10.1152/physrev.00041.2013
  • 8 Cregg JM, DePaul MA, Filous AR, Lang BT, Tran A, Silver J. Functional regeneration beyond the glial scar. Exp Neurol. 2014;253:197-207. doi:10.1016/j.expneurol.2013.12.024
  • 9 Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS et al. A transcriptome database for astrocytes, neurons and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28(1):264-78. doi:10.1523/JNEUROSCI.4178-07.2008
  • 10 Angelova PR, Kasymov V, Christie I, Sheikhbahaei S, Turovsky E, Marina N et al. Functional oxygen sensitivity of astrocytes. J Neurosci. 2015;35(29):10460-73. doi:10.1523/JNEUROSCI.0045-15.2015
  • 11 Duan CL, Liu CW, Shen SW, Yu Z, Mo JL, Chen XH et al. Striatal astrocytes transdifferentiate into functional mature neurons following ischemic brain injury. Glia. 2015;63(9):1660-70. doi:10.1002/glia.22837
  • 12 Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab. 2012;32(7):1222-32. doi:10.1038/jcbfm.2012.35
  • 13 Winship IR, Plaa N, Murphy TH. Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J Neurosci. 2007;27(23):6268-72. doi:10.1523/JNEUROSCI.4801-06.2007
  • 14 Nedergaard M, Verkhratsky A. Artifact versus reality: how astrocytes contribute to synaptic events. Glia. 2012;60(7):1013-23. doi:10.1002/glia.22288
  • 15 Panov A, Orynbayeva Z, Vavilin V, Lyakhovich V. Fatty acids in energy metabolism of the central nervous system. Biomed Res Int. 2014;2014:472459 doi:10.1155/2014/472459.
  • 16 Eugenin EA, Basilio D, Sáez JC, Orellana JA, Raine CS, Bukauskas F et al. The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J Neuroimmune Pharmacol. 2012;7(3):499-518. doi:10.1007/s11481-012-9352-5
  • 17 Pirttimaki TM, Parri HR. Astrocyte plasticity: implications for synaptic and neuronal activity. Neuroscientist. 2013;19(6):604-15. doi:10.1177/1073858413504999
  • 18 Friede R. Der quantitative Anteil der Glia an der Cortexentwicklung. Acta Anat (Base). 1954;20(3):290-6. doi:10.1159/000140905
  • 19 Kast B. The best supporting actors. Nature. 2001;412(6848):674-6. doi:10.1038/35089223
  • 20 Hawkins A, Olszewski J. Glia/nerve cell index for cortex of the whale. Science. 1957;126(3263):76-7. doi:10.1126/science.126.3263.76
  • 21 Tower DB, Elliot KA. Activity of acetylcholine system in cerebral cortex of various unanesthetized mammals. Am J Physiol. 1952;168(3):747-59.
  • 22 Tower DB. Structural and functional organization of mammalian cerebral cortex: the correlation of neurone density with brain size;.cortical neurone density in the fin whale (Balaenoptera physalus L) with a note on the cortical neurone density in the Indian elephant. J Comp Neurol. 1954;101(1):19-51. doi:10.1002/cne.901010103
  • 23 Herculano-Houzel S. The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia. 2014;62(9):1377-91. doi:10.1002/glia.22683
  • 24 Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B. Neocortical glial cell numbers in human brains. Neurobiol Aging. 2008;29(11):1754-62. doi:10.1016/j.neurobiolaging.2007.04.013
  • 25 Belmonte JC, Callaway EM, Caddick SJ, Churchland P, Feng G, Homanics GE et al. Brains, genes, and primates. Neuron. 2015;86(3):617-31. doi:10.1016/j.neuron.2015.03.021
  • 26 Nash B, Ioannidou K, Barnett SC. Astrocyte phenotypes and their relationship to myelination. J Anat. 2011;219(1):44-52. doi:10.1111/j.1469-7580.2010.01330.x
  • 27 Pérez-Alvarez A, Araque A. Astrocyte-neuron interaction at tripartite synapses. Curr Drug Targets. 2013;14(11):1220-4. doi:10.2174/13894501113149990203
  • 28 Richards GS, Simionato E, Perron M, Adamska M, Vervoort M, Degnan BM. Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr Biol. 2008;18(15):1156-61. doi:10.1016/j.cub.2008.06.074
  • 29 Sakarya O, Armstrong KA, Adamska M, Adamski M, Wang IF, Tidor B et al. A post-synaptic scaffold at the origin of the animal kingdom. PLoS ONE. 2007;2(6):e506. doi:10.1371/journal.pone.0000506
  • 30 Krubitzer L. In search of a unifying theory of complex brain evolution. Ann N Y Acad Sci. 2009;1156(1):44-67. doi:10.1111/j.1749-6632.2009.04421.x
  • 31 Perea G, Sur M, Araque A. Neuron-glia networks: integral gear of brain function. Front Cell Neurosci. 2014;8:378. doi:10.3389/fncel.2014.00378
  • 32 Hooks BM, Chen C. Critical periods in the visual system: changing views for a model of experience- dependent plasticity. Neuron. 2007;56(2):312-26. doi:10.1016/j.neuron.2007.10.003
  • 33 Bruner E. Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol. 2004;47(5):279-303. doi:10.1016/j.jhevol.2004.03.009
  • 34 Emes RD, Pocklington AJ, Anderson CNG, Bayes A, Collins MO, Vickers CA et al. Evolutionary expansion and anatomical specialization of synapse proteome complexity. Nat Neurosci. 2008;11(7):799-806. doi:10.1038/nn.2135
  • 35 Parpura V, Verkhratsky A. The astrocyte excitability brief: from receptors to gliotransmission. Neurochem Int. 2012;61(4):610-21. doi:10.1016/j.neuint.2011.12.001
  • 36 Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med. 2007;13(2):54-63. doi:10.1016/j.molmed.2006.12.005
  • 37 Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron. 2004;43(5):729-43. doi:10.1016/j.neuron.2004.08.011
  • 38 Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL et al. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron. 2003;40(5):971-82. doi:10.1016/S0896-6273(03)00717-7
  • 39 Nag S. Morphology and properties of astrocytes. Methods Mol Biol. 2011;686:69-100. doi:10.1007/978-1-60761-938-3_3
  • 40 Hewett JA. Determinants of regional and local diversity within the astroglial lineage of the normal central nervous system. J Neurochem. 2009;110(6):1717-36. doi:10.1111/j.1471-4159.2009.06288.x
  • 41 Martín R, Bajo-Grañeras R, Moratalla R, Perea G, Araque A. Circuit specific signaling in astrocyte-neuron networks in basal ganglio pathways. Science. 2015;349(6249):730-4. doi:10.1126/science.aaa7945
  • 42 Colombo JA, Reisin HD. Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res. 2004;1006(1):126-31. doi:10.1016/j.brainres.2004.02.003
  • 43 Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG. Synaptic islands defined by the territory of a single astrocyte. J Neurosci. 2007;27(24):6473-7. doi:10.1523/JNEUROSCI.1419-07.2007
  • 44 Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M et al. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci. 2007;10(3):331-9. doi:10.1038/nn1849
  • 45 Martin PM, Cifuentes-Diaz C, Garcia M, Goutebroze L, Girault JA. [Axon and Schwann cells... so far away, so close]. Rev Neurol (Paris). 2008;164(12):1057-62. doi:10.1016/j.neurol.2008.10.003
  • 46 Salzer Jl, Brophy PJ, Peles E. Molecular domains of myelinated axons in the peripheral nervous system. Glia. 2008;56(14):1532-40. doi:10.1002/glia.20750
  • 47 Broe M, Kril J, Halliday GM. Astrocytic degeneration relates to the severity of disease in frontotemporal dementia. Brain. 2004;127(10):2214-20. doi: 10.1093/brain/awh250
  • 48 Halliday GM, Stevens CH. Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord. 2011;26(1):6-17. doi:10.1002/mds.23455
  • 49 Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia. 2010;58(7):831-8. doi:10.1002/glia.20967
  • 50 Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S. Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci USA. 2009;106(52):22480-5. doi:10.1073/pnas.0911503106
  • 51 Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G et al. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet. 2010;19(15):3053-67. doi:10.1093/hmg/ddq212
  • 52 Garden GA, Libby RT, Fu YH, Kinoshita Y, Huang J, Possin DE et al. Polyglutamine-expanded ataxin-7 promotes non-cell-autonomous purkinje cell degeneration and displays proteolytic cleavage in ataxic transgenic mice. J Neurosci. 2002;22(12)2:4897-905.
  • 53 Custer SK, Garden GA, Gill N, Rueb U, Libby RT, Schultz C et al. Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport. Nat Neurosci. 2006;9(10)1302-11. doi:10.1038/nn1750
  • 54 Papadeas ST, Kraig SE, O’Banion C, Lepore AC, Maragakis NJ. Astrocytes carrying the superoxide dismutase 1(SOD1G93A) mutation induce wild type motor neuron degeneration in vivo. Proc Natl Acad Sci USA. 2011;108(43):17803-8. doi:10.1073/pnas.1103141108
  • 55 Tong J, Huang C, Bi F, Wu Q, Huang B, Liu X et al. Expression of ALS-linked TDP-43 mutant in astrocytes causes non-cell-autonomous motor neuron death in rats. EMBO J. 2013;32(13):1917-26. doi:10.1038/emboj.2013.122
  • 56 Grad LI, Fernando SM, Cashman NR. From molecule to molecule and cell to cell: prion-like mechanisms in amyotrophic lateral sclerosis. Neurobiol Dis. 2015;77:257-65. doi:10.1016/j.nbd.2015.02.009
  • 57 Prusiner SB, Woerman AL, Mordes DA et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A. 2015;pii: 201514475. doi:
  • 58 Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets. 2007;6(3):219-33. doi:10.2174/187152707780619326
  • 59 Hercher C, Chopra V, Beasley CL. Evidence for morphological alterations in prefrontal white matter glia in schizophrenia and bipolar disorder. J Psychiatry Neurosci. 2014;39(6):376-85. doi:10.1503/jpn.130277
  • 60 Verkhratsky A, Parpura V. Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders. Neurobiol Dis. 2015;85:254-61. doi:10.1016/j.nbd.2015.03.025