Subscribe to RSS
DOI: 10.1590/0004-282X20160119
Red blood cells in cerebrospinal fluid as possible inhibitory factor for enterovirus RT-PCR
Presença de hemácias no líquido cefalorraquidiano como possível fator inibitório da RT-PCR para detecção de enterovirusABSTRACT
The presence of hemoglobin in samples are considered an important inhibitory factor for polymerase chain reaction (PCR). The aim of this study was to examine the influence of red blood cells (RBC)s in cerebrospinal fluid (CSF) as an inhibitory factor to reverse transcription polymerase chain reaction (RT-PCR) for enteroviruses (EV). Forty-four CSF samples from patients showing characteristics of viral meningitis were assessed for EV by RT-PCR. Viral RNA extracted with guanidine isothyocianate buffer and virus detection was performed by in-house nested PCR. Positivity for EV RT-PCR was higher in CSF samples without RBCs than in samples with RBCs: 13(26%) and 36(9.2%), p = 0.001. In the group with positive EV RT-PCR, the mean + SD CSF RBC was 37 ± 183 cell/mm3; the group with negative results had 580 + 2,890 cell/mm3 (p = 0.007). The acceptable upper limit for CSF RBCs that could not influence RT-PCR was 108 cells/mm3. CSF samples with negative results for EV RT-PCR have more erythrocytes.
RESUMO
A presença de hemoglobina em amostras de fluidos corporais é considerada um fator inibitório importante da reação em cadeia da polimerase (PCR). O objetivo deste estudo era examinar a influencia de hemácias no líquido cefalorraquidiano (LCR) como um fator inibitório da RT-PCR para enterovirus (EV). Quatrocentos e quarenta amostras de LCR de pacientes com características de meningite viral foram avaliados para enterovirus por RT-PCR. RNA viral foi extraído com tampão de isotiocianato de guanidina e a detecção viral foi feita com nested PCR in-house. A positividade do EV RT-PCR no LCR foi maior nas amostras de LCR sem hemácias do que as amostras com hemácias: 13 (26%) e 36 (9,2%), respectivamente (p = 0,001). No grupo com resultados EV RT-PCR positivo, a media ± DP do número de hemácias no LCR foi 37 ± 183 cell/mm3 e no grupo com resultados negativos foi 580 ± 2.890 cell/mm3 (p = 0,007). O limite superior aceitável de hemácias no LCR para não inibir o resultado do PCR foi 108 cells/mm3. As amostras de LCR com resultados negativos para RT-PCR EV tem mais eritrócitos em comparação com amostras com resultados positivos.
Publication History
Received: 31 December 2015
Accepted: 14 July 2016
Article published online:
06 September 2023
© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Davies NWS, Brown LJ, Gonde J, D Irish, R O Robinson, A V Swan et al. Factors influencing PCR detection of viruses in cerebrospinal fluid of patients with suspected CNS infections. J Neurol Neurosurg Psychiatry. 2005;76(1):82-7. doi:10.1136/jnnp.2004.045336
- 2 Ochert AS, Boulter AW, Birnbaum W, Johnson NW, Teo CG. Inhibitory effect of salivary fluids on PCR: potency and removal. PCR Methods Appl. 1994;3(6):365-8. doi:10.1101/gr.3.6.365
- 3 Spreer A. Detection of infectious agents. In: Deisenhammer F, Sellebjerg F, Teunissen CE, Tumani H, editors. Cerebrospinal fluid in clinical neurology. New York: Springer; 2015. p. 131-42.
- 4 Almeida SM, Nogueira MB, Raboni SM, Vidal LRR. Laboratorial diagnosis of lymphocytic meningitis. Braz J Infect Dis. 2007;11(5):489-95. doi:10.1590/S1413-86702007000500010
- 5 Casas I, Powell L, Klapper P, Cleator G. New method for the extraction of viral RNA and DNA from cerebrospinal fluid for use in the polymerase chain reaction assay. J Virol Methods. 1995;53(1):25-36. doi:10.1016/0166-0934(94)00173-E
- 6 Casas I, Tenorio A, Echevarría JM, Klapper PE, Cleator GM. Detection of enteroviral RNA and specific DNA of herpesviruses by multiplex genome amplification. J Virol Methods. 1997;66(1):39-50. doi:10.1016/S0166-0934(97)00035-9
- 7 Casas I, Pozo F, Trallero G, Echevarría JM, Tenorio A. Viral diagnosis of neurological infection by RT multiplex PCR: a search for entero and herpesviruses in a prospective study. J Med Virol.1999;57(2):145-51. doi:10.1002/(SICI)1096-9071(199902)57:2<145::AID-JMV10>3.0.CO;2-N
- 8 Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr. 2007;96(5):644-7. doi:10.1111/j.1651-2227.2006.00178.x
- 9 Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher et al. Regulating the eukaryotic cell cycle. In: James D, Lodish H, Baltimore D. Molecular cell biology. 4th ed. New York: W. H. Freeman; 2000. p. 51-104.
- 10 Debiasi R, Tyler K. Molecular methods for diagnosis of viral encephalitis. Clin Microbiol Rev. 2004;17(4):903-25. doi:10.1128/CMR.17.4.903-925.2004
- 11 Al-Soud W, Rådström P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol. 2001;39(2):485-93. doi:10.1128/JCM.39.2.485-493.200
- 12 Akane A, Matsubara K, Nakamura H, Takahashi S, Kimura K. Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a major inhibitor of polymerase chain reaction (PCR) amplification. Forensic Sci. 1994;39(2):362-72. doi:10.1520/JFS13607J
- 13 Satsangi J, Jewell DP, Welsh K, Bunce M, Bell JI. Effect of heparin on polymerase chain reaction. Lancet. 1994;343(8911):1509-10. doi:10.1016/S0140-6736(94)92622-0
- 14 Perch-Nielsen IR, Bang DD, Poulsen CR, El-Ali J, Wolff A. Removal of PCR inhibitors using dielectrophoresis as a selective filter in a microsystem. Lab Chip. 2003;3(3):212-6. doi:10.1039/b304549h
- 15 Brown B, Oberste MS, Maher K, Pallansch MA. Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. J Virol. 2003;77(16):8973-84. doi:10.1128/JVI.77.16.8973-8984.2003
- 16 Chadwick DR, Lever AML. The impact of new diagnostic methodologies in the management of meningitis in adults at a teaching hospital. QJM. 2000;95(10):663-70. doi:10.1093/qjmed/95.10.663
- 17 Puchhammer-Stöckl E, Presterl E, Croÿ C, Aberle S, Popow-Kraupp T, Kundi M et al. Screening for possible failure of herpes simplex virus PCR in cerebrospinal fluid for the diagnosis of herpes simplex encephalitis. J Med Virol. 2001;64(40:531-6. doi:10.1002/jmv.1082
- 18 Vidal LR, Almeida SM, Messias-Reason IJ, Nogueira MB, Debur MC, Pessa LF et al. Enterovirus and herpesviridae family as etiologic agents of lymphomonocytary meningitis, Southern Brazil. Arq Neuropsiquiatr. 2011;69(3):475-81. doi:10.1590/S0004-282X2011000400013
- 19 Tang YW, Mitchell PS, Espy MJ, Smith TF, Persing DH. Molecular diagnosis of herpes simplex virus infections in the central nervous system. J Clin Microbiol. 1999;37(7):2127-36.
- 20 Weber T, Frye S, Bodemer M, Otto M, Lüke W. Clinical implications of nucleic acid amplification methods for the diagnosis of viral infections of the nervous system. J Neurovirol. 1996;2(3):175-90. doi:10.3109/13550289609146880