CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2016; 74(10): 785-790
DOI: 10.1590/0004-282X20160123
ARTICLE

Working memory and left medial temporal cortical thickness

Memória de trabalho e espessura cortical temporal medial esquerda
Giuseppe Pastura
1   Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Departamento de Pediatria, Rio de Janeiro RJ, Brasil;
,
Tadeu Takao Almodovar Kubo
2   Clínica de Diagnóstico por Imagem (CDPI), Rio de Janeiro RJ, Brasil;
,
Maria Angélica Regalla
3   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brasil;
,
Cíntia Machado Mesquita
3   Universidade Federal do Rio de Janeiro, Instituto de Psiquiatria, Rio de Janeiro RJ, Brasil;
,
Gabriel Coutinho
4   Centro de Neuropsicologia Aplicada/Instituto D`Or, Rio de Janeiro RJ, Brasil;
,
Emerson Leandro Gasparetto
5   Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Departamento de Radiologia, Rio de Janeiro RJ, Brasil;
,
Otávio Figueiredo
6   Universidade Federal do Rio de Janeiro, Instituto COPPEAD, Rio de Janeiro RJ, Brasil;
,
Paulo Mattos
7   Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Departamento de Psiquiatria, Rio de Janeiro RJ, Brasil.
,
Alexandra Prüfer de Queiroz Campos Araújo
1   Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Departamento de Pediatria, Rio de Janeiro RJ, Brasil;
› Institutsangaben

ABSTRACT

Objective

To perform a pilot study to investigate the association between working memory and cortical thickness in a sample of attention deficit/hyperactivity disorder (ADHD) children.

Methods

Seventeen children aged 7-10 years diagnosed with ADHD and 16 healthy children underwent a magnetic resonance scan for cortical thickness measurements. Data was correlated with working memory performance using the Backwards Digit Span subtest of the Wechsler Intelligence Scale for Children.

Results

Working memory impairment, evidenced by lower scores on the Backwards Digit Span, was observed in patients with ADHD compared to healthy controls. There was a direct correlation between working memory and cortical thickness of the left medial temporal lobe (Spearman’s correlation coefficient: 0.499; p < 0.005).

Conclusions

Our data suggests, for the first time, a correlation between working memory, evaluated by the Backwards Digit Span, and left medial temporal cortical thickness.

RESUMO

Objetivo

Realizar estudo piloto para investigar a associação entre memória de trabalho e espessura cortical em crianças com transtorno de défict de atenção e hiperatividade (TDAH).

Métodos

Dezessete crianças com TDAH, entre 7 e 10 anos, e dezesseis crianças saudáveis foram submetidas a ressonância magnética para aferição de espessura cortical. Os dados foram correlacionados com desempenho da memória de trabalho usando a ordem inversa do subteste Dígitos da Escala de Inteligência Wechsler para Crianças.

Resultados

Prejuízos na memória de trabalho, evidenciado pela menor pontuação na ordem inversa do subteste Dígitos, foram observados em pacientes com TDAH, em comparação com crianças saudáveis. Observou-se correlação direta entre memória de trabalho e espessura do lobo temporal médio à esquerda (coeficiente de correlação de Spearman: 0,499; p < 0,005).

Conclusões

Nossos dados sugerem, pela primeira vez, uma correlação entre memória de trabalho, avaliada através da pontuação na ordem inversa do subteste Dígitos, e espessura do córtex temporal medial à esquerda.



Publikationsverlauf

Eingereicht: 30. April 2016

Angenommen: 13. Juni 2016

Artikel online veröffentlicht:
06. September 2023

© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Polanczyk GV, Willcutt EG, Salum GA, Kieling C, Rohde LA. ADHD prevalence estimates across three decades: an updated systematic review and meta-regression analysis. Int J Epidemiol. 2014;43(2):434-42. doi:10.1093/ije/dyt261
  • 2 Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention deficit/hyperactivity disorder. JAMA. 2002;288(14):1740-8. doi: 10.1001/jama.288.14.1740
  • 3 Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand. 2012;125(2):114-26. doi:10.1111/j.1600-0447.2011.01786.x
  • 4 Shaw P, Malek M, Watson B, Greenstein D, Rossi P, Sharp W. Trajectories of cerebral cortical development in childhood and adolescence and adult attention-deficit/hyperactivity disorder. Biol Psychiatry. 2013;74(8):599-606. doi:10.1016/j.biopsych.2013.04.007
  • 5 Kaufman AS, Lichtenberger EO. Essentials of WAIS-III Assessment. New York: John Wiley & Sons; 1999.
  • 6 Baddeley AD. Working memory, thought, and action. New York: Oxford University Press; 2007.
  • 7 Cockcroft K. Working memory functioning in children with attention-deficit/hyperactivity disorder (ADHD): a comparison between subtypes and normal controls. J Child Adolesc Ment Health. 2011;23(2):107-18. doi:10.2989/17280583.2011.63454
  • 8 Wechsler DW. WISC III: escala de Inteligencia Wechsler para crianças: manual. 3a ed. São Paulo: Casa do Psicologo; 2002.
  • 9 Groth-Marnat G, Baker S. Digit Span as a measure of everyday attention: a study of ecological validity. Percept Mot Skills. 2003;97(3 Pt 2):1209-18. doi:10.2466/PMS.97.8.1209-1218
  • 10 Martinussen R, Hayden J, Hogg-Johnson S, Tannock R. A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2005;44(4):377-84. doi:10.1097/01.chi.0000153228.72591.73
  • 11 Figueiredo VLM. Adaptação e padronização Brasileira da escala de inteligência Wechsler para crianças, terceira edição – WISC-III. São Paulo: Casa do Psicólogo; 2002.
  • 12 Rosenthal EN, Riccio CA, Gsanger KM, Jarratt KP. Digit Span components as predictors of attention problems and executive functioning in children. Arch Clin Neuropsychol. 2006;21(2):131-9. doi:10.1016/j.acn.2005.08.004
  • 13 Coutinho G, Mattos P, Malloy-Diniz LF. Neuropsychological differences between attention deficit hyperactivity disorder and control children and adolescents referred for academic impairment. Rev Bras Psiquiatr. 2009;31(2):141-4. doi:10.1590/S1516-44462009000200011
  • 14 Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein D et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci USA. 2007;104(49):19649-54. doi:10.1073/pnas.0707741104
  • 15 American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 4th edition (DSM-IV). Washington, DC: American Psychiatric Association; 1994.
  • 16 Kaufman J, Birmaher B, Brent D, Rao U, Ryan N. The Schedule for affective disorders and schizophrenia for school-age children. Pittsburgh: University of Pittsburgh Medical Center; 1996.
  • 17 Brasil HHA, Bordin IA. Convergent validity of K-SADS-PL by comparison with CBCL in a Portuguese speaking outpatient population. BMC Psychiatry. 2010;10(1):83. doi:10.1186/1471-244X-10-83
  • 18 American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 5th edition (DSM-V). Washington, DC: American Psychiatric Association; 2013.
  • 19 Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968-80. doi:10.1016/j.neuroimage.2006.01.02
  • 20 Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F et al. Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry. 2003;60(9):878-88. doi:10.1001/archpsyc.60.9.878
  • 21 Shaw P, Lerch J, Greenstein D, Sharp W, Clasen L, Evans A et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2006;63(5):540-9. doi:10.1001/archpsyc.63.5.540
  • 22 Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RS, Busa E et al. Thinning of the cerebral cortex in aging. Cereb Cortex. 2004;14(7):721-30. doi:10.1093/cercor/bhh032
  • 23 Ramsay MC, Reynolds CR. Separate digits tests: a brief history, literature review, and a reexamination of the factor structure of the Test of Memory and Learning (TOMAL). Neuropsychol Rev.1995;5(3):151-71. doi:10.1007/BF02214760
  • 24 Gilbert SJ, Burgess PW. Executive function. Curr Biol. 2008;18(3):R110-4. doi:10.1016/j.cub.2007.12.014
  • 25 Axmacher N, Schmitz DP, Wagner T, Elger CE, Fell J. Interactions between medial temporal lobe, prefrontal cortex, and inferior temporal regions during visual working memory: a combined intracranial EEG and functional magnetic resonance imaging study. J Neurosci. 2008;28(29):7304-12. doi:10.1523/JNEUROSCI.1778-08.2008
  • 26 Axmacher N, Elger CE, Fell J. Working memory-related hippocampal deactivation interferes with long-term memory formation. J Neurosci. 2009;29(4):1052-60. doi:10.1523/JNEUROSCI.5277-08.2009
  • 27 Cashdollar N, Duncan JS, Duzel E. Challenging the classical distinction between long-term and short-term memory: reconsidering the role of the hippocampus. Future Neurol. 2011;6(3):351-62. doi:10.2217/fnl.11.12
  • 28 Stretton J, Winston G, Sidhu M, Centeno M, Vollmar C, Bonelli S et al. Neural correlates of working memory in Temporal Lobe Epilepsy: an fMRI study. Neuroimage. 2012;60(3):1696-703. doi:10.1016/j.neuroimage.2012.01.126
  • 29 Ranganath C, Cohen MX, Dam C, D’Esposito M. Inferior temporal, prefrontal, and hippocampal contributions to visual working memory maintenance and associative memory retrieval. J Neurosci. 2004;24(16):3917-25. doi:10.1523/JNEUROSCI.5053-03.2004
  • 30 Baddeley A. Working memory and language: an overview. J Commun Disord. 2003;36(3):189-208. doi:10.1016/S0021-9924(03)00019-4
  • 31 Stretton J, Thompson PJ. Frontal lobe function in temporal lobe epilepsy. Epilepsy Res. 2012;98(1):1-13. doi:10.1016/j.eplepsyres.2011.10.009