Subscribe to RSS

DOI: 10.1590/0004-282X20160131
Effects of crocin on brain oxidative damage and aversive memory in a 6-OHDA model of Parkinson’s disease
Efeitos da crocina no dano oxidativo cerebral e na memória aversiva em um modelo 6-OHDA de doença de Parkinson
ABSTRACT
The purpose of the present study was to investigate the effect of crocin on brain oxidative damage and memory deficits in a 6-hydroxydopamine (6-OHDA) model of Parkinson’s disease. Male Wistar rats were subjected to unilateral injection of 6-OHDA (16 μg) into the medial forebrain bundle and treated with crocin (30 and 60 mg/kg) for six weeks. The rats were tested for memory performance at six weeks after 6-OHDA infusion, and then were killed for the estimation of biochemical parameters. The increase in thiobarbituric acid reactive substances (TBARS) and nitrite levels in the hippocampus were observed in the 6-OHDA lesioned rats, which was accompanied by memory deficits in a passive avoidance test at the end of week 6. Moreover, treatment with crocin decreased TBARS and nitrite levels in the hippocampus, and improved aversive memory. The present study conclusively demonstrated that crocin acts as an antioxidant and anti-inflammatory agent in the hippocampus of parkinsonian rats and could improve aversive memory through its properties.
RESUMO
O objetivo do presente estudo foi investigar o efeito da crocina no dano oxidativo cerebral e nos déficits de memória em um modelo 6-OHDA de doença de Parkinson. Ratos Wistar machos foram submetidos à injeção unilateral de 6-OHDA (16 μg) em MFB e tratados com crocina (30 e 60 mg/kg), durante 6 semanas. Os ratos foram testados quanto ao desempenho da memória 6 semanas após a infusão de 6-OHDA, e, em seguida, foram sacrificados para a estimativa dos parâmetros bioquímicos. O aumento nos níveis de TBARS e de nitrito no hipocampo foram observados em ratos 6-OHDA lesionados, acompanhado por déficits de memória em um teste de esquiva passiva no final da semana 6. Além disso, o tratamento com crocina diminuiu os níveis de nitrito e de TBARS no hipocampo e melhorou a memória aversiva. O presente estudo demonstrou conclusivamente que a crocina age como um antioxidante e um agente anti-inflamatório no hipocampo de ratos parkinsonianos e pode melhorar a memória aversiva através de suas propriedades.
Support:
Support: This study was supported by Isfahan University of Medical Sciences.
Publication History
Received: 16 March 2016
Accepted: 06 June 2016
Article published online:
06 September 2023
© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Marsden CD. Parkinson’s disease. Lancet. 1990; 335(8695):948-52. doi:10.1016/0140-6736(90)91006-V
- 2 Goetz CG, Emre M, Dubois B. Parkinson’s disease dementia: definitions, guidelines, and research perspectives in diagnosis. Ann Neurol. 2008;64(Suppl 2):S81-92. doi:10.1002/ana.21455
- 3 Joelving FC, Billeskov R, Christensen JR, West M, Pakkenberg B. Hippocampal neuron and glial cell numbers in Parkinson’s disease: a stereological study. Hippocampus. 2006;16(10):826-33. doi:10.1002/hipo.20212
- 4 Jokinen P, Brück A, Aalto S, Forsback S, Parkkola R, Rinne JO. Impaired cognitive performance in Parkinson’s disease is related to caudate dopaminergic hypofunction and hippocampal atrophy. Parkinsonism Relat Disord. 2009;15(2):88-93. doi:10.1016/j.parkreldis.2008.03.005
- 5 Laakso MP, Partanen K, Riekkinen P, Lehtovirta M, Helkala EL, Hallikainen M et al. Hippocampal volumes in Alzheimer’s disease, Parkinson’s disease with and without dementia, and in vascular dementia: an MRI study. Neurology. 1996;46(3):678-81. doi:10.1212/WNL.46.3.678
- 6 Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother. 2015;74:101-10. doi:10.1016/j.biopha.2015.07.025
- 7 Cadet JL, Brannock C. Free radicals and the pathobiology of brain dopamine systems. Neurochem Int. 1998;32(2):117-31. doi:10.1016/S0197-0186(97)00031-4
- 8 Jenner P. Altered mitochondrial function, iron metabolism and glutathione levels in Parkinson’s disease. Acta Neurol Scand Suppl. 1993;146:6-13.
- 9 Kumar R, Agarwal AK, Seth PK. Free radical-generated neurotoxicity of 6-hydroxydopamine. J Neurochem. 1995;64(4):1703-7. doi:10.1046/j.1471-4159.1995.64041703.x
- 10 Guo S, Bezard E, Zhao B, Yang X, Bezard E, Zhao B. Protective effect of green tea polyphenols on the SHSY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med. 2005;39(5):682-95. doi:10.1016/j.freeradbiomed.2005.04.022
- 11 Liaudet L, Vassalli G, Pacher P. Role of peroxynitrite in the redox regulation of cell signal transduction pathways. Front Biosci (Landmark Ed). 2009;14(14):4809-14. doi:10.2741/3569
- 12 Chen Y, Zhang H, Tian X, Zhao C, Cai L, Liu Y et al. Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides Ellis and Crocus sativus L.: a relationship investigation between antioxidant activity and crocin contents. Food Chem. 2008;109(3):484-92. doi:10.1016/j.foodchem.2007.09.080
- 13 Rajaei Z, Hadjzadeh MA, Nemati H, Hosseini M, Ahmadi M, Shafiee S. Antihyperglycemic and antioxidant activity of crocin in streptozotocin-induced diabetic rats. J Med Food. 2013;16 206-10. doi:10.1089/jmf.2012.2407
- 14 Nam KN, Park YM, Jung HJ, Lee JY, Min BD, Park SU et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol. 2010;648:110-6. doi:10.1016/j.ejphar.2010.09.003
- 15 Purushothuman S, Nandasena C, Peoples CL, El Massri N, Johnstone DM, Mitrofanis J et al. Saffron pre-treatment offers neuroprotection to nigral and retinal dopaminergic cells of MPTP-Treated mice. J Parkinsons Dis. 2013;3(1):77-83. doi:10.3233/JPD-130173
- 16 Zhang GF, Zhang Y, Zhao G. Crocin protects PC12 cells against MPP+-induced injury through inhibition of mitochondrial dysfunction and ER stress. Neurochem Int. 2015;89:101-10. doi:10.1016/j.neuint.2015.07.011
- 17 Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 5th ed. Amsterdam: Elsevier Academic; 2005.
- 18 Wang GW, Cai JX. Reversible disconnection of the hippocampal-prelimbic cortical circuit impairs spatial learning but not passive avoidance learning in rats. Neurobiol Learn Mem. 2008;90(2):365-73. doi:10.1016/j.nlm.2008.05.009
- 19 Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol. 1968;5(1):107-10. doi:10.1016/0014-2999(68)90164-7
- 20 Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD. Glutathione- related enzymes in brain in Parkinson’s disease. Ann Neurol. 1994;36(3):356-61. doi:10.1002/ana.410360306
- 21 Khuwaja G, Khan MM, Ishrat T, Ahmad A, Raza SS, Ashafaq M et al. Neuroprotective effects of curcumin on 6-hydroxydopamine-induced Parkinsonism in rats: behavioral, neurochemical and immunohistochemical studies. Brain Res. 2011;1368:254-63. doi:10.1016/j.brainres.2010.10.023
- 22 Koprich JB, Reske-Nielsen C, Mithal P, Isacson O. Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson’s disease. J Neuroinflammation. 2008;5(1):8. doi:10.1186/1742-2094-5-8
- 23 Mogi M, Togari A, Tanaka K, Ogawa N, Ichinose H, Nagatsu T. Increase in level of tumor necrosis factor (TNF)-alpha in 6-hydroxydopamine-lesioned striatum in rats without influence of systemic L-dopa on the TNF-alpha induction. Neurosci Lett. 1999;268(2):101-4. doi:10.1016/S0304-3940(99)00388-2
- 24 Knott C, Stern G, Wilkin GP. Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin1, and cyclooxygenases1 and 2. Mol Cell Neurosci. 2000;16(6):724-39. doi:10.1006/mcne.2000.0914
- 25 Xu R, Zhou Y, Fang X, Lu Y, Li J, Zhang J et al. The possible mechanism of Parkinson’s disease progressive damage and the preventive effect of GM1 in the rat model induced by 6-hydroxydopamine. Brain Res. 2014;1592:73-81. doi:10.1016/j.brainres.2014.09.053
- 26 Zheng YQ, Liu JX, Wang JN, Xu L. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res. 2007;1138:86-94. doi:10.1016/j.brainres.2006.12.064
- 27 Hritcu L, Ciobica A, Artenie V. Effects of right-unilateral 6-hydroxydopamine infusion induced memory impairment and oxidative stress: relevance for Parkinson’s disease. Cent Eur J Biol. 2008;3(3):250-7. doi:10.2478/s11535-008-0023-8
- 28 Kuhad A, Chopra K. Curcumin attenuates diabetic encephalopathy in rats: behavioral and biochemical evidences. Eur J Pharmacol. 2007;576(1-3):34-42. doi:10.1016/j.ejphar.2007.08.001
- 29 Perry EK, Curtis M, Dick DJ, Candy JM, Atack JR, Bloxham CA et al. Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1985;48(5):413-21. doi:10.1136/jnnp.48.5.413
- 30 Tiwari V, Chopra K. Resveratrol abrogates alcohol-induced cognitive deficits by attenuating oxidative-nitrosative stress and inflammatory cascade in the adult rat brain. Neurochem Int. 2013;62(6):861-9. doi:10.1016/j.neuint.2013.02.012