Subscribe to RSS

DOI: 10.1590/0004-282X20170009
Conventional physical therapy and physical therapy based on reflex stimulation showed similar results in children with myelomeningocele
Fisioterapia convencional e fisioterapia com estimulação reflexa apresentaram resultados semelhantes em crianças com mielomeningocele
ABSTRACT
We aimed to investigate whether infants with myelomeningocele would improve their motor ability and functional independence after ten sessions of physical therapy and compare the outcomes of conventional physical therapy (CPT) to a physical therapy program based on reflex stimulation (RPT). Twelve children were allocated to CPT (n = 6, age 18.3 months) or RPT (n = 6, age 18.2 months). The RPT involved proprioceptive neuromuscular facilitation. Children were assessed with the Gross Motor Function Measure and the Pediatric Evaluation of Disability Inventory before and after treatment. Mann-Whitney tests compared the improvement on the two scales of CPT versus RPT and the Wilcoxon test compared CPT to RPT (before vs. after treatment). Possible correlations between the two scales were tested with Spearman correlation coefficients. Both groups showed improvement on self-care and mobility domains of both scales. There were no differences between the groups, before, or after intervention. The CPT and RPT showed similar results after ten weeks of treatment.
RESUMO
O estudo investigou se crianças com mielomeningocele melhorariam sua habilidade motora/funcional após dez sessões de fisioterapia e comparou o quadro motor de um grupo submetido à fisioterapia convencional (FC) com outro tratado com fisioterapia com estimulação reflexa (RF). Doze crianças foram alocadas em FC (n=6, 18,3 meses de idade) ou FR (n=6, 18,2 meses de idade). FR envolveu facilitação neuromuscular proprioceptiva. As crianças foram avaliadas com a Medida de Função Motora Grossa (GMFM) e o Inventário de Avaliação Pediátrica de Incapacidade (PEDI) antes e depois do tratamento. Testes de Mann-Whitney compararam a melhora na GMFM e PEDI (FC versus FR) e testes de Wilcoxon compararam FC e FR (antes versus depois). Possíveis correlações entre GMFM e PEDI foram testadas por coeficientes de Spearman. Ambos os grupos melhoraram na GMFM e PEDI (domínios autocuidado e mobilidade). Não houve diferença entre os grupos antes e após a intervenção. FC e FR apresentaram efeitos semelhantes depois de dez semanas de tratamento.
Publication History
Received: 15 April 2016
Accepted: 21 November 2016
Article published online:
05 September 2023
© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Zambelli H, Carelli E, Honorato D, Marba S, Coelho G, Carnevalle A et al. Assessment of neurosurgical outcome in children prenatally diagnosed with myelomeningocele and development of a protocol for fetal surgery to prevent hydrocephalus. Childs Nerv Syst. 2007;23(4):421-5. https://doi.org/10.1007/s00381-006-0261-x
- 2 Schoenmakers MA, Uiterwaal CS, Gulmans VA, Gooskens RH, Helders PJ. Determinants of functional independence and quality of life in children with spina bifida. Clin Rehabil. 2005;19(6):677-85. https://doi.org/10.1191/0269215505cr865oa
- 3 Warf BC. Hydrocephalus associated with neural tube defects: characteristics, management, and outcome in sub-Saharan Africa. Childs Nerv Syst. 2011;27(10):1589-94. https://doi.org/10.1007/s00381-011-1484-z
- 4 Seitzberg A, Lind M, Biering-Sørensen F. Ambulation in adults with myelomeningocele. Is it possible to predict the level of ambulation in early life? Childs Nerv Syst. 2008;24(2):231-7. https://doi.org/10.1007/s00381-007-0450-2
- 5 Danielsson AJ, Bartonek A, Levey E, McHale K, Sponseller P, Saraste H. Associations between orthopaedic findings, ambulation and health-related quality of life in children with myelomeningocele. J Child Orthop. 2008;2(1):45-54. https://doi.org/10.1007/s11832-007-0069-6
- 6 Bartonek A, Saraste H. Factors influencing ambulation in myelomeningocele: a cross-sectional study. Dev Med Child Neurol. 2001;43(4):253-60. https://doi.org/10.1017/S0012162201000482
- 7 Bartonek A. Motor development toward ambulation in preschool children with myelomeningocele: a prospective study. Pediatr Phys Ther. 2010;22(1):52-60. https://doi.org/10.1097/PEP.0b013e3181cc132b
- 8 Bartonek A, Saraste H, Danielsson A. Health-related quality of life and ambulation in children with myelomeningocele in a Swedish population. Acta Paediatr. 2012;101(9):953-6. https://doi.org/10.1111/j.1651-2227.2012.02742.x
- 9 McDonald CM, Jaffe KM, Mosca VS, Shurtleff DB. Ambulatory outcome of children with myelomeningocele: effect of lower-extremity muscle strength. Dev Med Child Neurol. 1991;33(6):482-90. https://doi.org/10.1111/j.1469-8749.1991.tb14913.x
- 10 Agre JC, Findley TW, McNally MC, Habeck R, Leon AS, Stradel L et al. Physical activity capacity in children with myelomeningocele. Arch Phys Med Rehabil. 1987;68(6):372-7.
- 11 Warsof SL, Abramowicz JS, Sayegh SK, Levy DL. Lower limb movements and urologic function in fetuses with neural tube and other central nervous system defects. Fetal Ther. 1988;3(3):129-34. https://doi.org/10.1159/000263344
- 12 Sival DA, van Weerden TW, Vles JS, Timmer A, Dunnen WF, Staal-Schreinemachers AL et al. Neonatal loss of motor function in human spina bifida aperta. Pediatrics. 2004;114(2):427-34. https://doi.org/10.1542/peds.114.2.427
- 13 Teulier C, Smith BA, Kubo M, Chang CL, Moerchen V, Murazko K et al. Stepping responses of infants with myelomeningocele when supported on a motorized treadmill. Phys Ther. 2009;89(1):60-72. https://doi.org/10.2522/ptj.20080120
- 14 Voss DE, Ionta MK, Myers BJ. Facilitação neuromuscular proprioceptiva. São Paulo: Médica Panamericana;1987.
- 15 Sá CSC, Santos FH, Xavier GF. Motor, sensorial and cognitive changes in children with spastic diparetic cerebral palsy submitted to Kabat and Bobath physiotherapy approaches. Rev Fisioter Univ São Paulo. 2004;11(1):56-65.
- 16 Britto VLS, Correa R, Vincent MB. Proprioceptive neuromuscular facilitation in HTLV-I-associated myelopathy/tropical spastic paraparesis. Rev Soc Bras Med Trop. 2014;47(1):24-9. https://doi.org/10.1590/0037-8682-0245-2013
- 17 Levitt S. Proprioceptive neuromuscular facilitation techniques in cerebral palsy. Physiotherapy. 1966;52(2):46-51.
- 18 Hoffer MM, Feiwell E, Perry R, Perry J, Bonnett C. Functional ambulation in patients with myelomeningocele. J Bone Joint Surg Am. 1973;55(1):137-48. https://doi.org/10.2106/00004623-197355010-00014
- 19 Russell DJ, Rosenbaum PL, Lane M, Gowland C, Goldsmith CH, Boyce WF et al. Training users in the gross motor function measure: methodological and practical issues. Phys Ther. 1994;74(7):630-6.
- 20 Adair B, Said CM, Rodda J, Morris ME. Psychometric properties of functional mobility tools in hereditary spastic paraplegia and other childhood neurological conditions. Dev Med Child Neurol. 2012;54(7):596-605. https://doi.org/10.1111/j.1469-8749.2012.04284.x
- 21 Wang HY, Yang YH, Jong YJ. Correlations between change scores of measures for muscle strength and motor function in individuals with spinal muscular atrophy types 2 and 3. Am J Phys Med Rehabil. 2013;92(4):335-42. https://doi.org/10.1097/PHM.0b013e318269d66b
- 22 Tsai PY, Yang TF, Chan RC, Huang PH, Wong TT. Functional investigation in children with spina bifida: measured by the Pediatric Evaluation of Disability Inventory (PEDI). Childs Nerv Syst. 2002;18(1-2):48-53. https://doi.org/10.1007/s00381-001-0531-6
- 23 Choksi A, Townsend EL, Dumas HM, Haley SM. Functional recovery in children and adolescents with spinal cord injury. Pediatr Phys Ther. 2010;22(2):214-21. https://doi.org/10.1097/PEP.0b013e3181dc011a
- 24 McDonald CM. Rehabilitation of children with spinal dysraphism. Neurosurg Clin N Am. 1995;6(2):393-412.
- 25 Dietz V. G. Heiner Sell memorial lecture: neuronal plasticity after spinal cord injury: significance for present and future treatments. J Spinal Cord Med. 2006;29(5):481-8. https://doi.org/10.1080/10790268.2006.11753897
- 27 Raineteau O, Schwab ME. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci. 2001;2(4):263-73. https://doi.org/10.1038/35067570
- 28 Pantall A, Teulier C, Smith BA, Moerchen V, Ulrich BD. Impact of enhanced sensory input on treadmill step frequency: infants born with myelomeningocele. Pediatr Phys Ther. 2011;23(1):42-52. https://doi.org/10.1097/PEP.0b013e318206eefa
- 29 Heathcock JC, Christensen C, Bush K, Butler M, Buehner JJ, Basso DM. Treadmill training after surgical removal of a spinal tumor in infancy. Phys Ther. 2014;94(8):1176-85. https://doi.org/10.2522/ptj.20130508
- 30 Karmel-Ross, K.,Cooperman, DR.,Van Doren, CL. The effect of electrical stimulation on quadriceps femoris muscle torque in children with spina bifida. Phys Ther. 1992;72(10):723-30.