CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2017; 75(08): 509-514
DOI: 10.1590/0004-282X20170088
ARTICLES

The relationship between motor function, cognition, independence and quality of life in myelomeningocele patients

Relação entre função motora, cognição, independência funcional e qualidade de vida em pacientes com mielomeningocele
Carolina Lundberg Luz
1   Universidade de São Paulo, Faculdade de Medicina, Departamento de Fisioterapia, Fonoaudiologia e Ciências da Comunicação e Terapia Ocupacional, São Paulo SP, Brasil;
,
Maria Clara Drummond Soares de Moura
1   Universidade de São Paulo, Faculdade de Medicina, Departamento de Fisioterapia, Fonoaudiologia e Ciências da Comunicação e Terapia Ocupacional, São Paulo SP, Brasil;
,
Karine Kyomi Becker
1   Universidade de São Paulo, Faculdade de Medicina, Departamento de Fisioterapia, Fonoaudiologia e Ciências da Comunicação e Terapia Ocupacional, São Paulo SP, Brasil;
,
Rosani Aparecida Antunes Teixeira
2   Universidade de São Paulo, Instituto de Psicologia, São Paulo SP, Brasil.
,
Mariana Callil Voos
1   Universidade de São Paulo, Faculdade de Medicina, Departamento de Fisioterapia, Fonoaudiologia e Ciências da Comunicação e Terapia Ocupacional, São Paulo SP, Brasil;
,
Renata Hydee Hasue
1   Universidade de São Paulo, Faculdade de Medicina, Departamento de Fisioterapia, Fonoaudiologia e Ciências da Comunicação e Terapia Ocupacional, São Paulo SP, Brasil;
› Author Affiliations

ABSTRACT

Motor function, cognition, functional independence and quality of life have been described in myelomeningocele patients, but no study has investigated their relationships. We aimed to investigate the relationships between motor function, cognition, functional independence, quality of life, age, and lesion level in myelomeningocele patients, and investigate the influence of hydrocephalus on these variables. We assessed 47 patients with the Gross Motor Function Measure (motor function), Raven’s Colored Progressive Matrices (cognition), Pediatric Evaluation of Disability Inventory (functional independence) and the Autoquestionnaire Qualité de vie Enfant Imagé (quality of life). Spearman’s correlation tests determined relationships between the variables. The Friedman ANOVAs determined the influence of hydrocephalus. Motor function was strongly related to mobility and lesion level, and moderately related to cognition, self-care and social function. Cognition and quality of life were moderately related to functional independence. Age correlated moderately with functional independence and quality of life. Hydrocephalus resulted in poorer motor/cognitive outcomes and lower functional independence.

RESUMO

Função motora, cognição, independência funcional e qualidade de vida foram descritos em pacientes com mielomeningocele (MMC), mas sua correlação não foi investigada. Esse estudo investigou correlações entre função motora, cognição, independência funcional, qualidade de vida, idade, nível de lesão em pacientes com MMC e a influência da hidrocefalia nessas variáveis. Quarenta e sete pacientes foram avaliados com a Medida de Função Motora Grossa, Matrizes Progressivas de Raven, Inventário de Avaliação Pediátrica de Incapacidade e Autoquestionnaire Qualité de vie Enfant Imagé. Testes de Spearman investigaram as correlações. ANOVAS de Friedman investigaram a influência da hidrocefalia. A função motora correlacionou-se fortemente com mobilidade e nível de lesão e moderadamente com cognição, auto-cuidado e função social. Cognição e qualidade de vida correlacionaram-se moderadamante com independência funcional. Idade correlacionou moderadamente com independência funcional e qualidade de vida. Hidrocefalia associou-se a piores desfechos motores/cognitivos e menor independência funcional.



Publication History

Received: 15 April 2016

Accepted: 15 April 2017

Article published online:
05 September 2023

© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Fletcher JM, Copeland K, Frederick JA, Blaser SE, Kramer LA, Northrup H et al. Spinal lesion level in spina bifida: a source of neural and cognitive heterogeneity. J Neurosurg. 2005;102(3 Suppl):268-79. https://doi.org/10.3171/ped.2005.102.3.0268
  • 2 Bartonek A, Saraste H, Danielsson A. Health-related quality of life and ambulation in children with myelomeningocele in a Swedish population. Acta Paediatr. 2012;101(9):953-6. https://doi.org/10.1111/j.1651-2227.2012.02742.x
  • 3 Bartoneck A, Saraste H. Factors influencing ambulation in myelomeningocele: a cross-sectional study. Dev Med Child Neurol. 2001;43(4):253-60. https://doi.org/10.1017/S0012162201000482
  • 4 Christensen C, Lowes, LP. Treadmill training for a child with spina bifida without functional ambulation. Pediatr Phys Ther. 2014;26(2):265-73. https://doi.org/10.1097/PEP.20170088201700880029
  • 5 Lynch A, Ryu JC, Agrawal S, Galloway JC. Power mobility training for a 7-month-old infant with spina bifida. Pediatr Phys Ther. 2009;21(4):362-8. https://doi.org/10.1097/PEP.0b013e3181bfae4c
  • 6 Roebroeck ME, Hempenius L, Baalen B, Hendriksen JG, Berg-Emons HJ, Stam HJ. Cognitive functioning of adolescents and young adults with meningomyelocele and level of everyday physical activity. Disabil Rehabil. 2006;28(20):1237-42. https://doi.org/10.1080/09638280600551716
  • 7 Lindquist B, Uvebrant P, Rehn E, Carlsson G. Cognitive functions in children with myelomeningocele without hydrocephalus. Childs Nerv Syst. 2009;25(8):969-75. https://doi.org/10.1007/s00381-009-0843-5
  • 8 Iddon JL, Morgan DJ, Loveday C, Sahakian BJ, Pickard JD. Neuropsychological profile of young adults with spina bifida with or without hydrocephalus. J Neurol Neurosurg Psychiatry. 2004;75(8):1112-8. https://doi.org/10.1136/jnnp.2003.029058
  • 9 Hetherington R, Dennis M, Barnes M, Drake J, Gentili F. Functional outcome in young adults with spina bifida and hydrocephalus. Childs Nerv Syst. 2006;22(2):117-24. https://doi.org/10.1007/s00381-005-1231-4
  • 10 Dennis M, Barnes MA. The cognitive phenotype of spina bifida meningomyelocele. Dev Disabil Res Rev. 2010;16(1):31-9. https://doi.org/10.1002/ddrr.89
  • 11 Dennis M, Landry SH, Barnes M, Fletcher JM. A model of neurocognitive function in spina bifida over the life span. J Int Neuropsychol Soc. 2006;12(2):285-96. https://doi.org/10.1017/S1355617706060371
  • 12 Sirzai H, Dogu B, Demir S, Yilmaz F, Kuran B. Assessment on self-care, mobility and social function in children with spina bifida in Turkey. Neural Regen Res. 2014;9(12):1234-40. https://doi.org/10.4103/1673-5374.135332
  • 13 Wang JC, Lai CJ, Wong TT, Liang ML, Chen HH, Chan RC et al. Health-related quality of life in children and adolescents with spinal dysraphism: results from a Taiwanese sample. Childs Nerv Syst. 2013;29(9):1671-9. https://doi.org/10.1007/s00381-013-2117-5
  • 14 Russell DJ, Rosenbaum PL, Cadman DT, Gowland C, Hardy S, Jarvis S. The gross motor function measure: a means to evaluate the effects of physical therapy. Dev Med Child Neurol. 1989;31(3):341-52. https://doi.org/10.1111/j.1469-8749.1989.tb04003.x
  • 15 Raven JC, Raven J, Court JH. Matrizes progressivas coloridas de Raven: manual. São Paulo: Casa do Psicólogo; 1988.
  • 16 Ziviani J, Ottenbacher KJ, Shephard K, Foreman S, Astbury W, Ireland P. Concurrent validity of the Functional Independence Measure for Children (WeeFIM) and the pediatric evaluation of disabilities inventory in children with developmental disabilities and acquired brain injuries. Phys Occup Ther Pediatr. 2001;21(2-3):91-101. https://doi.org/10.1080/J006v21n02_08
  • 17 Norrlin S, Strinnholm M, Carlsson M, Dahl M. Factors of significance for mobility in children with myelomeningocele. Acta Paediatr. 2003;92(2):204-10. https://doi.org/10.1111/j.1651-2227.2003.tb00527.x
  • 18 Schoenmakers MA, Gulmans VA, Gooskens RH, Pruijs JE, Helders PJ. Spinal fusion in children with spina bifida: influence on ambulation level and functional abilities. Eur Spine J. 2005;14(4):415-22. https://doi.org/10.1007/s00586-004-0768-3
  • 19 Assumpção Junior FBJ, Kuczynski E, Sprovieri MH, Aranha EMG. [Quality of life evaluation scale (AUQEI): validity and reliability of a quality of life scale for children from 4 to 12 years-old]. Arq Neuro-Psiquiatr. 2000;58(1):119-27. Portuguese. https://doi.org/10.1590/S0004-282X220170088100018
  • 20 Sibinski M, Synder M, Higgs ZC, Kujawa J, Grzegorzewski A. Quality of life and functional disability in skeletally mature patients with myelomeningocele-related spinal deformity. J Pediatr Orthop B. 2013;22(2):106-9. https://doi.org/10.1097/BPB.0b013e32835c2a65
  • 21 Davis BE, Shurtleff DB, Walker WO, Seidel KD, Duguay S. Acquisition of autonomy skills in adolescents with myelomeningocele. Dev Med Child Neurol. 2006;48(4):253-8. https://doi.org/10.1017/S0012162206000569
  • 22 Vinck A, Nijhuis-van der Sanden MW, Roeleveld NJ, Mullaart RA, Rotteveel JJ, Maassen BA. Motor profile and cognitive functioning in children with spina bifida. Eur J Paediatr Neurol. 2010;14(1):86-92. https://doi.org/10.1016/j.ejpn.2009.01.003
  • 23 Tsai PY, Yang TF, Chan RC, Huang PH, Wong TT. Functional investigation in children with spina bifida, measured by the Pediatric Evaluation of Disability Inventory (PEDI). Childs Nerv Syst. 2002;18(1-2):48-53. https://doi.org/10.1007/s00381-001-0531-6
  • 24 Barf HA, Post MW, Verhoef M, Gooskens RH, Prevo AJ. Is cognitive functioning associated with subjective quality of life in young adults with spina bifida and hydrocephalus? J Rehabil Med. 2010;42(1):56-9. https://doi.org/10.2340/16501977-0481
  • 25 Verhoef M, Barf HA, Post MW, Asbeck FW, Gooskens RH, Prevo AJ. Functional independence among young adults with spina bifida, in relation to hydrocephalus and level of lesion. Dev Med Child Neurol. 2006;48(2):114-9. https://doi.org/10.1017/S0012162206000259