CC BY-NC-ND 4.0 · Arq Neuropsiquiatr 2017; 75(12): 875-880
DOI: 10.1590/0004-282X20170156
Article

High expression of XIAP and Bcl-2 may inhibit programmed cell death in glioblastomas

Alta expressão de XIAP e Bcl-2 pode inibir morte celular programada em glioblastomas
Daniela Pretti da Cunha Tirapelli
1   Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Ribeirão Preto SP, Brasil
,
Isis Lacrose Lustosa
1   Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Ribeirão Preto SP, Brasil
,
Sarah Bomfim Menezes
1   Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Ribeirão Preto SP, Brasil
,
Indira Maynart Franco
1   Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Ribeirão Preto SP, Brasil
,
Andressa Romualdo Rodrigues
1   Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Ribeirão Preto SP, Brasil
,
Fernanda Maris Peria
2   Universidade de São Paulo, Departamento de Medicina Interna, Ribeirão Preto SP, Brasil
,
Alexandre Magno da Nóbrega Marinho
3   Universidade Federal de Campina Grande, Unidade Acadêmica de Ciências Médicas, Campina Grande PB, Brazil
,
Luciano Neder Serafini
4   Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Patologia e Medicina Legal, Ribeirão Preto SP, Brasil
,
Carlos Gilberto Carlotti Jr
1   Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Ribeirão Preto SP, Brasil
,
Luís Fernando Tirapelli
1   Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Ribeirão Preto SP, Brasil
› Author Affiliations

ABSTRACT

Glioblastoma (GBM) is the most malignant glioma and represents 29% of all brain tumors. Tumorigenesis is intimately connected with characteristics acquired in the physiologic pathway of cellular death.

Objective: In the present study, the expression of anti-apoptotic (XIAP and Bcl-2) and apoptotic (cytochrome C, caspase 9, APAF-1), caspase 3 and the Smac/DIABLO genes related to the apoptosis pathway were evaluated in 30 samples of glioblastoma.

Methods: The gene expression was evaluated in 30 glioblastomas (WHO grade IV) and compared to 10 white matter control samples with real-time PCR.

Results and Conclusion: There were higher expressions of XIAP (p = 0.0032) and Bcl-2 (p = 0.0351) in the glioblastoma samples compared to the control samples of normal brain. These results raise the question of whether Bcl-2 and XIAP genes can be responsible for the inhibition of programmed cell death in glioblastomas. Moreover, they provide additional information capable of allowing the development of new target therapy strategies.

RESUMO

O glioblastoma (GBM) é o glioma mais maligno e representa 29% de todos os tumores cerebrais. A tumorigênese está intimamente ligada à características adquiridas na via fisiológica de morte celular.

Objetivo: Avaliar a expressão de genes anti-apoptóticos (XIAP e Bcl-2) e apoptóticos (citocromo C, a caspase 9, APAF-1), caspase 3 e SMAC/DIABLO, relacionados à apoptose, em 30 amostras de tecido de pacientes com glioblastoma.

Métodos: A expressão gênica foi avaliada em trinta glioblastomas e comparada a dez amostras controles de substância branca por PCR em tempo real.

Resultados e Conclusão: Houve maior nível de expressão de XIAP (p = 0,0032) e Bcl-2 (p = 0,0351) em comparação com as amostras controle, de cérebro normal. Estes resultados levantam a questão de que os genes Bcl-2 e XIAP podem ser responsáveis pela inibição da morte celular programada em glioblastomas, além disso, proporcionam informação adicional capaz de permitir o desenvolvimento de novas estratégias de terapia alvo.



Publication History

Received: 11 August 2016

Accepted: 14 August 2017

Article published online:
01 September 2023

© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97-109. https://doi.org/10.1007/s00401-007-0243-4
  • 2 Louis DN, Perry A, Reifenberger G, Deimling A, Figarella-Branger D, Cavenee WK et al. The 2016 World Health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803-20. https://doi.org/10.1007/s00401-016-1545-1
  • 3 Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 2016;164(3):550-63. https://doi.org/10.1016/j.cell.2015.12.028
  • 4 Frei K, Ambar B, Adachi N, Yonekawa Y, Fontana A. Ex vivo malignant glioma cells are sensitive to Fas (CD95/APO-1) ligand-mediated apoptosis. J Neuroimmunol. 1998;87(1-2):105-13. https://doi.org/10.1016/S0165-5728(98)00065-4
  • 5 Stupp R, Hegi ME, Gilbert MR, Chakravarti A. Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol. 2007;25(26):4127-36. https://doi.org/10.1200/JCO.2007.11.8554
  • 6 Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170(5):1445-53. https://doi.org/10.2353/ajpath.2007.070011
  • 7 Griguer CE, Oliva CR. Bioenergetics pathways and therapeutic resistance in gliomas: emerging role of mitochondria. Curr Pharm Des. 2011;17(23):2421-7. https://doi.org/10.2174/138161211797249251
  • 8 Network CG. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061-8. https://doi.org/10.1038/nature07385
  • 9 Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98-110. https://doi.org/10.1016/j.ccr.2009.12.020
  • 10 Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16(6):2129-44. https://doi.org/10.7314/APJCP.2015.16.6.2129
  • 11 Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004;5(11):897-907. https://doi.org/10.1038/nrm1496
  • 12 Salvesen GS, Duckett CS. IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol. 2002;3(6):401-10. https://doi.org/10.1038/nrm830
  • 13 Emery IF, Gopalan A, Wood S, Chow KH, Battelli C, George J et al. Expression and function of ABCG2 and XIAP in glioblastomas. J Neurooncol. 2017;133(1):47-57. https://doi.org/10.1007/s11060-017-2422-z
  • 14 Vellanki SH, Grabrucker A, Liebau S, Proepper C, Eramo A, Braun V et al. Small-molecule XIAP inhibitors enhance gamma-irradiation-induced apoptosis in glioblastoma. Neoplasia. 2009;11(8):743-52.
  • 15 Lee FA, Zee BC, Cheung FY, Kwong P, Chiang CL, Leung KC et al. Randomized Phase II study of the X-linked Inhibitor of Apoptosis (XIAP) antisense AEG35156 in combination with sorafenib in patients with advanced hepatocellular carcinoma (HCC). Am J Clin Oncol. 2016;39(6):609-13. https://doi.org/10.1097/COC.20170156201701560099
  • 16 Lytle RA, Jiang Z, Zheng X, Higashikubo R, Rich KM. Retinamide-induced apoptosis in glioblastomas is associated with down-regulation of Bcl-xL and Bcl-2 proteins. J Neurooncol. 2005;74(3):225-32. https://doi.org/10.1007/s11060-005-7305-z
  • 17 Tirapelli LF, Bolini PH, Tirapelli DP, Peria FM, Becker AN, Saggioro FP et al. Caspase-3 and Bcl-2 expression in glioblastoma: an immunohistochemical study. Arq Neuropsiquiatr. 2010;68(4):603-7. https://doi.org/10.1590/S0004-282X2010000400023
  • 18 Krakstad C, Chekenya M. Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics. Mol Cancer. 2010;9:135. https://doi.org/10.1186/1476-4598-9-135
  • 19 Strik H, Deininger M, Streffer J, Grote E, Wickboldt J, Dichgans J et al. BCL-2 family protein expression in initial and recurrent glioblastomas: modulation by radiochemotherapy. J Neurol Neurosurg Psychiatry. 1999;67(6):763-8. https://doi.org/10.1136/jnnp.67.6.763
  • 20 Watanabe T, Hirota Y, Arakawa Y, Fujisawa H, Tachibana O, Hasegawa M et al. Frequent LOH at chromosome 12q22-23 and Apaf-1 inactivation in glioblastoma. Brain Pathol. 2003;13(4):431-9. https://doi.org/10.1111/j.1750-3639.2003.tb00474.x
  • 21 Ceruti S, Mazzola A, Abbracchio MP. Resistance of human astrocytoma cells to apoptosis induced by mitochondria-damaging agents: possible implications for anticancer therapy. J Pharmacol Exp Ther. 2005;314(2):825-37. https://doi.org/10.1124/jpet.105.085340
  • 22 Shi Y. Mechanical aspects of apoptosome assembly. Curr Opin Cell Biol. 2006;18(6):677-84. https://doi.org/10.1016/j.ceb.2006.09.006
  • 23 Konstantinidou AE, Givalos N, Gakiopoulou H, Korkolopoulou P, Kotsiakis X, Boviatsis E et al. Caspase-3 immunohistochemical expression is a marker of apoptosis, increased grade and early recurrence in intracranial meningiomas. Apoptosis. 2007;12(4):695-705. https://doi.org/10.1007/s10495-006-0001-4
  • 24 Ray SK, Patel SJ, Welsh CT, Wilford GG, Hogan EL, Banik NL. Molecular evidence of apoptotic death in malignant brain tumors including glioblastoma multiforme: upregulation of calpain and caspase-3. J Neurosci Res. 2002;69(2):197-206. https://doi.org/10.1002/jnr.10265
  • 25 Rajalingam K, Oswald M, Gottschalk K, Rudel T. Smac/DIABLO is required for effector caspase activation during apoptosis in human cells. Apoptosis. 2007;12(8):1503-10. https://doi.org/10.1007/s10495-007-0067-7
  • 26 Loo G, Saelens X, Gurp M, MacFarlane M, Martin SJ, Vandenabeele P. The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ. 2002;9(10):1031-42. https://doi.org/10.1038/sj.cdd.4401088