Subscribe to RSS

DOI: 10.1590/0004-282X20180080
Twenty-five years since the identification of the first SCA gene: history, clinical features and perspectives for SCA1
Vinte e cinco anos desde a identificação do primeiro gene das SCAs: história, aspectos clínicos e perspectivas para a SCA1
ABSTRACT
Spinocerebellar ataxias (SCA) are a clinically and genetically heterogeneous group of monogenic diseases that share ataxia and autosomal dominant inheritance as the core features. An important proportion of SCAs are caused by CAG trinucleotide repeat expansions in the coding region of different genes. In addition to genetic heterogeneity, clinical features transcend motor symptoms, including cognitive, electrophysiological and imaging aspects. Despite all the progress in the past 25 years, the mechanisms that determine how neuronal death is mediated by these unstable expansions are still unclear. The aim of this article is to review, from an historical point of view, the first CAG-related ataxia to be genetically described: SCA 1.
RESUMO
As ataxias espinocerebelares (SCA) são um grupo clínico e geneticamente heterogêneo de doenças monogênicas que compartilham ataxia e herança autossçmica dominante como características principais. Uma proporção importante de SCAs é causada por expansões de repetição de trinucleotídeos CAG na região de codificação de diferentes genes. Além da heterogeneidade genética, os aspectos clínicos transcendem os sintomas motores, incluindo aspectos cognitivos, eletrofisiológicos e de imagem. Apesar de todo o progresso feito nos últimos 25 anos, os mecanismos que determinam como se dá a morte neuronal mediada por essas expansões instáveis ainda não estão claros. O objetivo deste artigo é revisar, de um ponto de vista histórico, a primeira ataxia geneticamente relacionada com o CAG descrita: SCA 1.
Support
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant #13/01766-7 and #2014/19786-7) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).
Publication History
Received: 18 February 2018
Accepted: 04 June 2018
Article published online:
23 August 2023
© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Friedreich, N. Ueber degenerative Atrophie der spinalen Hinterstränge. Arch Pathol Anat Physiol KlinMed. 1863;26:391-419.
- 2 Marie P. La semaine médicale: sur l'hérédo-ataxie cérébelleuse. Semaine Médicale. 1893.
- 3 Finsterer J. Ataxias with autosomal, X-chromosomal or maternal inheritance. Can J Neurol Sci. 2009 Jul;36(4):409-28. https://doi.org/10.1017/S0317167100007733
- 4 Cummings CJ, Orr HT, Zoghbi HY. Progress in pathogenesis studies of spinocerebellar ataxia type 1. Philos Trans R Soc Lond B Biol Sci. 1999 Jun;354(1386):1079-81. https://doi.org/10.1098/rstb.1999.0462
- 5 Schut JW. Hereditary ataxia: clinical study through six generations. Arch NeurPsych. 1950;63(4):535-68. https://doi.org/10.1001/archneurpsyc.1950.02310220002001
- 6 Konigsmark BW, Weiner LP. The olivopontocerebellar atrophies: a review. Medicine (Baltimore). 1970 May;49(3):227-41. https://doi.org/10.1097/00005792-197005000-00003
- 7 Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias: a study of 11 families, including descendants of the ‘the Drew family of Walworth’. Brain. 1982 Mar;105(Pt 1):1-28. https://doi.org/10.1093/brain/105.1.1
- 8 Matson GA, Schut JW, Swanson J. Hereditary ataxia: linkage studies in hereditary ataxia. Ann Hum Genet. 1961 May;25(1):7-23. https://doi.org/10.1111/j.1469-1809.1961.tb01492.x
- 9 Rich SS, Wilkie P, Schut L, Vance G, Orr HT. Spinocerebellar ataxia: localization of an autosomal dominant locus between two markers on human chromosome 6. Am J Hum Genet. 1987 Oct;41(4):524-31.
- 10 Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993 Jul;4(3):221-6. https://doi.org/10.1038/ng0793-221
- 11 Goldfarb LG, Vasconcelos O, Platonov FA, Lunkes A, Kipnis V, Kononova S et al. Unstable triplet repeat and phenotypic variability of spinocerebellar ataxia type 1. Ann Neurol. 1996 Apr;39(4):500-6. https://doi.org/10.1002/ana.410390412
- 12 Zühlke C, Dalski A, Hellenbroich Y, Bubel S, Schwinger E, Bürk K. Spinocerebellar ataxia type 1 (SCA1): phenotype-genotype correlation studies in intermediate alleles. Eur J Hum Genet. 2002;10(3):204-9. https://doi.org/10.1038/sj.ejhg.5200788
- 13 Banfi S, Servadio A, Chung MY, Kwiatkowski TJ Jr, McCall AE, Duvick LA et al. Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat Genet. 1994 Aug;7(4):513-20. https://doi.org/10.1038/ng0894-513
- 14 Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet. 1998 Jun;19(2):148-54. https://doi.org/10.1038/502
- 15 Emamian ES, Kaytor MD, Duvick LA, Zu T, Tousey SK, Zoghbi HY et al. Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron. 2003 May;38(3):375-87. https://doi.org/10.1016/S0896-6273(03)00258-7
- 16 Manto M, Marmolino D. Cerebellar ataxias. Curr Opin Neurol. 2009 Aug;22(4):419-29. https://doi.org/10.1097/WCO.0b013e32832b9897
- 17 Castilhos RM, Furtado GV, Gheno TC, Schaeffer P, Russo A, Barsottini O et al. Rede Neurogenetica. Spinocerebellar ataxias in Brazil: frequencies and modulating effects of related genes. Cerebellum. 2014 Feb;13(1):17-28. https://doi.org/10.1007/s12311-013-0510-y
- 18 Silveira I, Lopes-Cendes I, Kish S, Maciel P, Gaspar C, Coutinho P et al. Frequency of spinocerebellar ataxia type 1, dentatorubropallidoluysian atrophy, and Machado-Joseph disease mutations in a large group of spinocerebellar ataxia patients. Neurology. 1996 Jan;46(1):214-8. https://doi.org/10.1212/WNL.46.1.214
- 19 Trott A, Jardim LB, Ludwig HT, Saute JA, Artigalás O, Kieling C et al. Spinocerebellar ataxias in 114 Brazilian families: clinical and molecular findings. Clin Genet. 2006 Aug;70(2):173-6. https://doi.org/10.1111/j.1399-0004.2006.00656.x
- 20 Teive HA, Munhoz RP, Arruda WO, Lopes-Cendes I, Raskin S, Werneck LC et al. Spinocerebellar ataxias: genotype-phenotype correlations in 104 Brazilian families. Clinics (São Paulo). 2012;67(5):443-9. https://doi.org/10.6061/clinics/2012(05)07
- 21 Lopes-Cendes I, Steiner CE, Silveira I, Pinto Júnior W, Maciel JA, Rouleau GA. Clinical and molecular characteristics of a Brazilian family with spinocerebellar ataxia type 1. Arq Neuropsiquiatr. 1996 Sep;54(3):412-8. https://doi.org/10.1590/S0004-282X1996000300009
- 22 Filla A, Mariotti C, Caruso G, Coppola G, Cocozza S, Castaldo I et al. Relative frequencies of CAG expansions in spinocerebellar ataxia and dentatorubropallidoluysian atrophy in 116 Italian families. Eur Neurol. 2000;44(1):31-6. https://doi.org/10.1159/000008189
- 23 Illarioshkin SN, Slominsky PA, Ovchinnikov IV, Markova ED, Miklina NI, Klyushnikov SA et al. Spinocerebellar ataxia type 1 in Russia. J Neurol. 1996 Jul;243(7):506-10. https://doi.org/10.1007/BF00886871
- 24 Krysa W, Sulek A, Rakowicz M, Szirkowiec W, Zaremba J. High relative frequency of SCA1 in Poland reflecting a potential founder effect. Neurol Sci. 2016 Aug;37(8):1319-25. https://doi.org/10.1007/s10072-016-2594-x
- 25 Jacobi H, Montcel ST, Bauer P, Giunti P, Cook A, Labrum R et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol. 2015 Nov;14(11):1101-8. https://doi.org/10.1016/S1474-4422(15)00202-1
- 26 Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998 Apr;121(Pt 4):561-79. https://doi.org/10.1093/brain/121.4.561
- 27 Klinke I, Minnerop M, Schmitz-Hübsch T, Hendriks M, Klockgether T, Wüllner U et al. Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum. 2010 Sep;9(3):433-42. https://doi.org/10.1007/s12311-010-0183-8
- 28 Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S et al. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013 Dec;260(12):3134-43. https://doi.org/10.1007/s00415-013-7138-1
- 29 Ma J, Wu C, Lei J, Zhang X. Cognitive impairments in patients with spinocerebellar ataxia types 1, 2 and 3 are positively correlated to the clinical severity of ataxia symptoms. Int J Clin Exp Med. 2014 Dec;7(12):5765-71.
- 30 Moriarty A, Cook A, Hunt H, Adams ME, Cipolotti L, Giunti P. A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7. Orphanet J Rare Dis. 2016 Jun;11(1):82. https://doi.org/10.1186/s13023-016-0447-6
- 31 Jacobi H, Hauser TK, Giunti P, Globas C, Bauer P, Schmitz-Hübsch T et al. Spinocerebellar ataxia types 1, 2, 3 and 6: the clinical spectrum of ataxia and morphometric brainstem and cerebellar findings. Cerebellum. 2012 Mar;11(1):155-66. https://doi.org/10.1007/s12311-011-0292-z
- 32 Leroi I, O'Hearn E, Marsh L, Lyketsos CG, Rosenblatt A, Ross CA et al. Psychopathology in patients with degenerative cerebellar diseases: a comparison to Huntington's disease. Am J Psychiatry. 2002 Aug;159(8):1306-14. https://doi.org/10.1176/appi.ajp.159.8.1306
- 33 McMurtray AM, Clark DG, Flood MK, Perlman S, Mendez MF. Depressive and memory symptoms as presenting features of spinocerebellar ataxia. J Neuropsychiatry Clin Neurosci. 2006;18(3):420-2. https://doi.org/10.1176/jnp.2006.18.3.420
- 34 Dang D, Cunnington D. Excessive daytime somnolence in spinocerebellar ataxia type 1. J Neurol Sci. 2010 Mar;290(1-2):146-7. https://doi.org/10.1016/j.jns.2009.12.007
- 35 Abele M, Bürk K, Laccone F, Dichgans J, Klockgether T. Restless legs syndrome in spinocerebellar ataxia types 1, 2, and 3. J Neurol. 2001 Apr;248(4):311-4. https://doi.org/10.1007/s004150170206
- 36 Martins CR Jr, Martinez AR, D’Abreu A, Lopes-Cendes I, França Junior MC. Fatigue is frequent and severe in spinocerebellar ataxia type 1. Parkinsonism Relat Disord. 2015 Jul;21(7):821-2. https://doi.org/10.1016/j.parkreldis.2015.04.015
- 37 Buttner N, Geschwind D, Jen JC, Perlman S, Pulst SM, Baloh RW. Oculomotor phenotypes in autosomal dominant ataxias. Arch Neurol. 1998 Oct;55(10):1353-7. https://doi.org/10.1001/archneur.55.10.1353
- 38 Abele M, Bürk K, Andres F, Topka H, Laccone F, Bösch S et al. Autosomal dominant cerebellar ataxia type I. Nerve conduction and evoked potential studies in families with SCA1, SCA2 and SCA3. Brain. 1997 Dec;120(Pt 12):2141-8. https://doi.org/10.1093/brain/120.12.2141
- 39 Warrenburg BP, Notermans NC, Schelhaas HJ, Alfen N, Sinke RJ, Knoers NV et al. Peripheral nerve involvement in spinocerebellar ataxias. Arch Neurol. 2004 Feb;61(2):257-61. https://doi.org/10.1001/archneur.61.2.257
- 40 Linnemann C, Montcel ST, Rakowicz M, Schmitz-Hübsch T, Szymanski S, Berciano J et al. Peripheral Neuropathy in Spinocerebellar Ataxia Type 1, 2, 3, and 6. Cerebellum. 2016 Apr;15(2):165-73. https://doi.org/10.1007/s12311-015-0684-6
- 41 Globas C, Montcel ST, Baliko L, Boesch S, Depondt C, DiDonato S et al. Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord. 2008 Nov;23(15):2232-8. https://doi.org/10.1002/mds.22288
- 42 Schut JW, Haymaker W. Hereditary ataxia: a pathologic study of five cases of common ancestry. J Neuropathol Clin Neurol. 1951 Jul;1(3):183-213.
- 43 Rüb U, Schöls L, Paulson H, Auburger G, Kermer P, Jen JC et al. Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol. 2013;104:38-66. https://doi.org/10.1016/j.pneurobio.2013.01.001
- 44 Iwabuchi K, Tsuchiya K, Uchihara T, Yagishita S. Autosomal dominant spinocerebellar degenerations. Clinical, pathological, and genetic correlations. Rev Neurol (Paris). 1999 Apr;155(4):255-70.
- 45 Schulz JB, Borkert J, Wolf S, Schmitz-Hübsch T, Rakowicz M, Mariotti C et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage. 2010 Jan;49(1):158-68. https://doi.org/10.1016/j.neuroimage.2009.07.027
- 46 Reetz K, Costa AS, Mirzazade S, Lehmann A, Juzek A, Rakowicz M et al. Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain. 2013 Mar;136(Pt 3):905-17. https://doi.org/10.1093/brain/aws369
- 47 Guerrini L, Lolli F, Ginestroni A, Belli G, Della Nave R, Tessa C et al. Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Brain. 2004 Aug;127(Pt 8):1785-95. https://doi.org/10.1093/brain/awh201
- 48 Della Nave R, Ginestroni A, Tessa C, Salvatore E, De Grandis D, Plasmati R et al. Brain white matter damage in SCA1 and SCA2. An in vivo study using voxel-based morphometry, histogram analysis of mean diffusivity and tract-based spatial statistics. Neuroimage. 2008 Oct;43(1):10-9. https://doi.org/10.1016/j.neuroimage.2008.06.036
- 49 Jacobi H, Reetz K, Montcel ST, Bauer P, Mariotti C, Nanetti L et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol. 2013 Jul;12(7):650-8. https://doi.org/10.1016/S1474-4422(13)70104-2
- 50 Martins Junior CR, Martinez AR, Rezende TJ, Branco LM, Pedroso JL, Barsottini OG et al. Spinal cord damage in spinocerebellar ataxia type 1. Cerebellum. 2017 Aug;16(4):792-6. https://doi.org/10.1007/s12311-017-0854-9
- 51 Oz G, Hutter D, Tkác I, Clark HB, Gross MD, Jiang H et al. Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov Disord. 2010 Jul;25(9):1253-61. https://doi.org/10.1002/mds.23067
- 52 Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell. 1998 Oct;95(1):41-53. https://doi.org/10.1016/S0092-8674(00)81781-X
- 53 Irwin S, Vandelft M, Pinchev D, Howell JL, Graczyk J, Orr HT et al. RNA association and nucleocytoplasmic shuttling by ataxin-1. J Cell Sci. 2005 Jan;118(Pt 1):233-42. https://doi.org/10.1242/jcs.01611
- 54 Yue S, Serra HG, Zoghbi HY, Orr HT. The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract. Hum Mol Genet. 2001 Jan;10(1):25-30. https://doi.org/10.1093/hmg/10.1.25
- 55 Fryer JD, Yu P, Kang H, Mandel-Brehm C, Carter AN, Crespo-Barreto J et al. Exercise and genetic rescue of SCA1 via the transcriptional repressor Capicua. Science. 2011 Nov;334(6056):690-3. https://doi.org/10.1126/science.1212673
- 56 Lim J, Crespo-Barreto J, Jafar-Nejad P, Bowman AB, Richman R, Hill DE et al. Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature. 2008 Apr;452(7188):713-8. https://doi.org/10.1038/nature06731
- 57 Lee JH, Tecedor L, Chen YH, Monteys AM, Sowada MJ, Thompson LM et al. Reinstating aberrant mTORC1 activity in Huntington's disease mice improves disease phenotypes. Neuron. 2015 Jan;85(2):303-15. https://doi.org/10.1016/j.neuron.2014.12.019
- 58 Sánchez I, Balagué E, Matilla-Dueñas A. Ataxin-1 regulates the cerebellar bioenergetics proteome through the GSK3β-mTOR pathway which is altered in Spinocerebellar ataxia type 1 (SCA1). Hum Mol Genet. 2016 Sep;25(18):4021-40. https://doi.org/10.1093/hmg/ddw242
- 59 Bettencourt C, Hensman-Moss D, Flower M, Wiethoff S, Brice A, Goizet C et al. DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases. Ann Neurol. 2016 Jun;79(6):983-90. https://doi.org/10.1002/ana.24656 PMID:27044000
- 60 Taniguchi JB, Kondo K, Fujita K, Chen X, Homma H, Sudo T et al. RpA1 ameliorates symptoms of mutant ataxin-1 knock-in mice and enhances DNA damage repair. Hum Mol Genet. 2016 Oct;25(20):4432-47. https://doi.org/10.1093/hmg/ddw272
- 61 Hourez R, Servais L, Orduz D, Gall D, Millard I, Exaerde AK et al. Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci. 2011 Aug;31(33):11795-807. https://doi.org/10.1523/JNEUROSCI.0905-11.2011
- 62 Miyazaki Y, Du X, Muramatsu S, Gomez CM. An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci Transl Med. 2016 Jul;8(347):347ra94. https://doi.org/10.1126/scitranslmed.aaf5660
- 63 Watase K, Gatchel JR, Sun Y, Emamian E, Atkinson R, Richman R et al. Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med. 2007 May;4(5):e182. https://doi.org/10.1371/journal.pmed.0040182
- 64 Romano S, Coarelli G, Marcotulli C, Leonardi L, Piccolo F, Spadaro M et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015 Oct;14(10):985-91. https://doi.org/10.1016/S1474-4422(15)00201-X
- 65 Matsuura S, Shuvaev AN, Iizuka A, Nakamura K, Hirai H. Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1. Cerebellum. 2014 Jun;13(3):323-30. https://doi.org/10.1007/s12311-013-0536-1
- 66 Keiser MS, Boudreau RL, Davidson BL. Broad therapeutic benefit after RNAi expression vector delivery to deep cerebellar nuclei: implications for spinocerebellar ataxia type 1 therapy. Mol Ther. 2014 Mar;22(3):588-95. https://doi.org/10.1038/mt.2013.279